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Active versus passive squeezing
by second-harmonic generation
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The characteristics of squeezed light generated by both passive (occurring in a cavity external to a laser) and
active (occurring within a laser cavity) second-harmonic generation (SHG) are investigated and contrasted.
Squeezing of both the fundamental and the second harmonic is discussed, and the issue of doubly versus
singly resonant behavior is addressed. We examine passive squeezing by explicitly modeling the intrinsically
noisy output of the pump laser and coupling it to a passive, multiport, lossy SHG cavity. Low-frequency
degradation of the squeezing caused by the laser pump noise is predicted and provides a probable explanation
for previous discrepancies between theory and experiment. Active squeezing is quantitatively modeled by
a three-level laser model that retains all laser dynamics. Previously disparate predictions are reconciled.
For one parameter set two regimes of squeezing are predicted: 50% squeezing at frequencies lower than the
laser relaxation oscillation, and near-perfect squeezing at frequencies above. A particular problem of active
squeezing is highlighted: The fast dephasing of the laser coherence introduces considerable excess noise likely
to mask squeezing in experimental situations. We conclude that, although passive SHG is a practical source
of squeezing, active SHG is unlikely to be so in the foreseeable future.  1996 Optical Society of America
1. INTRODUCTION

As one of the simplest nonlinear optical processes, second-
harmonic generation (SHG) has been extensively investi-
gated and successfully used as a source of nonclassical
light. In this paper we present models for both active
(occurring within a laser cavity) and passive (occurring
in a cavity external to a laser) SHG that include the ef-
fect of noise from the laser. In particular, we evaluate
the squeezing available with Nd:YAG as an active gain
medium and investigate which experimental approaches
are the most promising.

Perfect amplitude squeezing of either the fundamen-
tal or the second harmonic, depending on the relative
loss rates,1 – 2 has been predicted for a passive, doubly
resonant, lossless SHG cavity. In the experimentally
simpler case of a cavity resonant solely at the fundamen-
tal it is still theoretically possible to obtain maximum
squeezing at the second harmonic of 1y9.3 Given the al-
lure of a bright, intensely squeezed source, there has been
an increasing amount of experimental work in this field.
Recent results include direct observations of as much as
52% noise reduction in the fundamental4,5 and 30% noise
reduction in the second harmonic.3,6 The strong correla-
tion between the fundamental and the second harmonic
has also been proposed as the basis of a quantum nonde-
molition measurement scheme.7

Most treatments of squeezing in passive SHG to date
have concentrated on the ideal regime, i.e., single-ended,
lossless systems that can attain extreme nonlinearities,
with a coherent pump or with idealized laser phase noise.8

There have been marked discrepancies between the-
ory and experiment.3 Our model allows a quantitative
comparison between theory and experiment by extending
previous treatments in two ways. First, we explicitly
consider the optimum squeezing available for a multi-
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port, lossy system with achievable or near-achievable
nonlinearities. Second, we explicitly model the pump as
the intrinsically noisy output of a laser. For the case
of singly resonant passive SHG, we compared our model
with experimental results6 and found excellent agree-
ment. In this paper we use our model to investigate and
compare the other experimental cases.

Active SHG, in which the doubling crystal is placed
inside the laser cavity, has been examined theoretically.
In the good-cavity limit, in which the atomic decay rates
are much higher than the relevant field decay rates,
as is the case for a gas laser, the system is modeled
by adiabatic elimination of the atomic variables.9 This
introduces broadband atomic noise, which degrades the
correlation between the amplitudes of the second har-
monic and the fundamental. Nevertheless, a maximum
of 50% squeezing of the amplitude of the second har-
monic has been predicted, with an optimum value at
zero frequency and decreasing with frequency. This has
been elegantly explained as the Poissonian photons of
the fundamental being converted with high efficiency to
second-harmonic photons, which consequently have half-
Poissonian statistics.10 In the bad-cavity limit, in which
the field decay rate of the mode of interest is much greater
then the atomic decay rate and the decay rate of the
other mode,11,12 the bandwidth of the atomic noise is small
and there is a high correlation between the amplitude
of the second harmonic and the fundamental. Appropri-
ate interaction between the two cavity modes allows per-
fect squeezing at nonzero frequencies. To the best of the
authors’ knowledge, no treatment to date has reconciled
these two regimes within the one model.

Previously, active SHG has been studied with either
the Haken–Lamb or the Lax–Louisell laser models. The
Haken–Lamb model retains all the laser dynamics of a
two-level system. However, for many lasers it is not pos-
1996 Optical Society of America
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sible to describe the threshold behavior correctly with
a two-level model. The Lax–Louisell model is a three-
level system in which the lasing coherence is adiabatically
eliminated. Unfortunately, some interesting dynamical
behavior is lost in this limit. In this paper we use a
three-level model13 similar to the Lax–Louisell model ex-
cept that it retains all laser dynamics explicitly.

Perfect squeezing can be achieved only when there
is a strong interaction between the fundamental and
the second harmonic. Experimentally this dictates a
doubly resonant system. Passive doubly resonant SHG
systems are technically complicated, as passive cavities
require locking systems to remain resonant. To high-
light this, consider that Kürz et al.,4 who obtained 52%
squeezing, could maintain double resonance for only as
long as 10 s. This compares poorly to passive singly reso-
nant systems, which can be maintained on lock for hours.
As active modes are automatically resonant, there is a
strong experimental attraction to active SHG, as it re-
quires locking of, at most, only the second-harmonic cav-
ity. It promises strong squeezing in technically elegant
systems.

This paper is arranged as follows. In Section 2 we de-
velop our models of active and passive SHG. Section 3
discusses modeling specific experiments and lists the nu-
merical values used in the remainder of the paper. In
Section 4 we explore and tabulate the regimes of squeez-
ing, with particular reference to the effect of nonzero laser
dephasing. Finally, the experimental implications and a
discussion of the results are given in Section 5.

2. THEORY

A. Hamiltonians and Master Equations
Figures 1(a) and 1(b) are schematics of passive and ac-
tive second-harmonic generation, respectively. The same
laser model is used for both, and consists of N three-
level atoms interacting with an optical ring-cavity mode
through the resonant Jaynes–Cummings Hamiltonian.
In the interaction picture this is

Ĥlaser  ih̄g23

NX
m1

sâ
y
Ĵ2

23 2 âĴ1
23d , (1)

where carets indicate operators, g23 is the dipole coupling
strength between the atoms and the cavity, â and ây are
the lasing-mode annihilation and creation operators, and
Ĵ1

23 and Ĵ2
23 are the collective Hermitian-conjugate lower-

ing and raising operators between the jilth and the jj lth
levels of the lasing atoms. Level 1 is the ground level.
The field phase factors are absorbed into the definition of
the atomic operators.

For the passive case the standard Hamiltonian for SHG
is used1:

Ĥshgl  ih̄
x

2
sb̂y2ĉ 2 b̂2ĉyd , (2a)

where b̂ and b̂y are the fundamental annihilation and
creation operators, ĉ and ĉy are the second-harmonic anni-
hilation and creation operators, and x is the coupling pa-
rameter for the interaction between the two modes. For
the active case the Hamiltonian is essentially the same,
except now the fundamental and the lasing modes are
one and the same, so that

Ĥshg2  ih̄
x

2
sây2ĉ 2 â2ĉyd , (2b)

where the other terms are as above.
For both cases, standard techniques14 are used to cou-

ple the lasing atoms and the cavities to reservoirs and to
derive a master equation for the reduced density operator
r̂ of the system. Included in the laser model are sponta-
neous atomic emission from level j3l to level j2l, and from
level j2l to level j1l, at rates g23 and g12, respectively. In-
coherent pumping of the laser occurs at a rate G; the rate
of collisional- or lattice-induced phase decay of the lasing
coherence is gp.

In general, optimum squeezing in these systems oc-
curs at zero detuning. Because of space constraints,
we do not examine the effect of non-zero detunings in
this paper: all detunings are set to zero. However,
in passing we mention the varied effects of detuning:
the quadrature of the squeezing can be rotated15 – 17; the
squeezing can be degraded as the intracavity intensity is
lowered, and less power is available to drive the non-
linearity; the form of the nonlinearity can change1; and
the stability point of the system can move.9 To date,
experimenters have found it possible to lock with suf-
ficient accuracy such that nonzero detunings need not
be considered,3,6 or they have obtained results by scan-
ning the detuning,4,5 allowing observation of the zero
detuning point. In both situations it has been found
that the theories with zero detuning model the results
satisfactorily.

In the passive case the driving of the SHG cavity by
the laser is modeled with the cascaded quantum system
formalism of Carmichael18 and Gardiner.19 The laser-
cavity damping rate of the output port that pumps the
passive cavity is 2ka; the cavity decay rate for the funda-
mental mode of the passive cavity is 2kb; and the cavity
decay rate for the second-harmonic mode is 2kc. The re-
sulting interaction-picture master equation is

Fig. 1. Schemata of (a) passive and (b) active second-harmonic
generation: a, the lasing mode; b, the fundamental mode of the
SHG cavity; and c, the second-harmonic mode.
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ij Ĵ2

ij r̂ 2 r̂Ĵ1
ij Ĵ2

ij d . (3a)

Similarly, in the active case the fundamental cavity damp-
ing rate is 2ka, and the cavity decay rate for the second-
harmonic mode is 2kc. The interaction-picture master
equation is

≠
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r̂ 
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1
ih̄
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1
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1
1
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gpf2sĴ3 2 Ĵ2dr̂sĴ3 2 Ĵ2d

2 sĴ3 2 Ĵ2d2r̂ 2 r̂sĴ3 2 Ĵ2d2g

1 kas2âr̂ây 2 âyâr̂ 2 r̂âyâd

1 kcs2ĉr̂ĉy 2 ĉyĉr̂ 2 r̂ĉyĉd . (3b)

B. Semiclassical Equations
The semiclassical equations of motion are obtained di-
rectly from the master equation by the approximation of
factorizing expectation values.

1. Passive Case
The semiclassical equations of motion for the passive case
are

ÙJ23  g23sJ3 2 J2da 2
1
2

sg23 1 g12 1 2gpdJ23 , (4)

ÙJ2  g23sJ23ay 2 Ĵ1
23ad 1 g23J3 2 g12J2 , (5)

ÙJ3  2g23sJ23ay 2 J1
23ad 1 GJ1 2 g23J3 , (6)

Ùa  g23J23 2 kaa , (7)
Ùb  xbyc 2 skb 1 iDbdb 2 2

p
kakb a , (8)

Ùc  2kcc 2
x

2
b2 , (9)

and their conjugate equations. The absence of circum-
flexes indicate semiclassical expectation values. Here ka

is the total loss rate of the laser cavity; kb is the total loss
rate of the fundamental light; kc is the total loss rate of
the second-harmonic light; and x is the coupling constant
between fundamental and the second harmonic. We use
the following standard scaling with the number of atoms
N:

ã 
a

p
N

, b̃ 
b

p
N

, x̃  x
p

N , g̃23  g23

p
N ,

J̃i 
Ji

N
, J̃ij 

Jij

N
. (10)
2. Active Case
In the active case, Eqs. (4)–(6) are unchanged; how-
ever, the equations for the fundamental and the second-
harmonic modes become

Ùa  g23J23 2 kaa 1 xayc , (11a)

Ùc  2 kcc 2
x

2
a2, (11b)

and their conjugate equations. We obtain the conditions
for semiclassical steady state by setting derivatives to
zero.

C. Noise Spectra
The drift and the diffusion matrices are listed in
Appendix A. Their calculation, by obtention of c-number
Fokker–Planck equations from the master equation with
positive-p representation, is standard.20 We assume that
the quantum fluctuations are sufficiently small that the
full solutions can be written in the form

ãstd  a0 1 da, b̃std  b0 1 db , c̃std  c0 1 dc ,

(12)

where a0 is the semiclassical steady state. For brevity
we use a, b, . . . , to mean the scaled steady-state solu-
tions, e.g., a ; ã0. The spectral matrix Ssvd is defined
as the Fourier-transformed matrix of the two time cor-
relation functions of these small quantum perturbations
sdãj d about the semiclassical steady state, i.e.,

Sij 
Z `

2`

expsivtdkdaist 1 td, daistdldti . (13)

The ordering of the perturbations for the passive and the
active cases, respectively, is

da  sda, day, db, dby, dc, dcy, dJ2
23, dJ3, dJ2, dJ1

23d ,

(14a)

da  sda, day, dc, dcy, dJ2
23, dJ2, dJ1

23d . (14b)

The spectral matrix may be calculated from the Fokker–
Planck equations in both cases. The solution for the
spectral matrix is

Ssvd  sA 2 ivI d21DsAT 1 ivI d21. (15)

The drift, A, and the diffusion, D, matrices are listed in
Appendix A. The squeezing spectrum is then defined by

V sXu , vd 
Z `

2`

expsivtdkXust 1 td, Xustdldt , (16)

where we use the notation kX, Yl  kXYl 2 kXlkY l. We
obtain noise spectra for modes, a, b, or c by defining the
quadrature phase amplitude of the transmitted field z as

Xustd  zoutstdexps2iud 1 zy
outstdexpsiud , (17)

where z represents modes a, b, or c. Setting u  0 gives
the amplitude noise spectra; provided the quantum per-
turbations are small, these spectra are equivalent to those
observed by direct detection of the beams.
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Using the inputyoutput formalism of Collett and
Gardiner,21 we are able to obtain the spectra in terms
of the spectral matrix Ssvd. In the passive case, us-
ing the ordering of Eq. 14(a), we obtain for the laser,
the transmitted fundamental, and the second harmonic,
respectively,

Vlaser  1 1 2kafS12svd 1 S21svd

1 exps22iudS11svd

1 exps2iudS22svdg ,

Vtransmitted fundamental  1 1 2kb2fS78svd 1 S87svd

1 exps22iudS77svd

1 exps2iudS88svdg ,

Vsecond harmonic  1 1 2kcfS9 10svd 1 S10 9svd

1 exps22iudS9 9svd

1 exps2iudS10 10svdg , (18)

where kb2 is the loss rate of a fundamental mirror that is
not the pump mirror.

The spectrum of the reflected fundamental depends on
both the noise of the laser mode and the noise of the
fundamental. The amplitude spectrum is thus given by

Vreflected fundamental

 1 1 2kb1fS78svd 1 S87svd 1 S77svd 1 S88svdg

1 2kafS12svd 1 S21svd 1 S11svd 1 S22svdg

1 2
p

kb1ka

"
S71svd 1 S72svd 1 S82svd 1 S81svd

1S17svd 1 S18svd 1 S27svd 1 S28svd

#
.

(19)

In the active case, using the ordering of Eq. 14(b), we
obtain spectra for the fundamental and the second har-
monic, respectively, as

Vfundamental  1 1 2kafS12svd 1 S21svd

1 exps22iudS11svd 1 exps2iudS22svdg ,

Vsecond harmonic  1 1 2kcfS78svd 1 S87svd

1 exps22iudS77svd 1 exps2iudS88svdg .

(20)

with Eq. (15), spectra can thus be generated numerically.

3. MODELING OF EXPERIMENTS AND
NUMERICAL PARAMETERS
We are particularly interested in experimental systems
pumped by Nd:YAG lasers. Although Nd:YAG lasers are
four-level systems, we can model them accurately with a
three-level model, as the decay rate from the fourth to
the third level is very much faster (approximately ten-
fold) than the other decay rates of the system, and so it
has negligible effects on the dynamics of the system. Ac-
cordingly, we use the following values:

g23  5 3 1025g12, g13  2g23g12,

gtot  sgp 1 g13 1 g23 1 1dg12 ,

s  6.5 3 10223 m2, gp  9000g12,

g23  fsc0srgtotdy4g1/2, (21)
where the speed of light in Nd:YAG is c0  1.64 3

108 ms21, the density of Nd atoms in Nd:YAG is
r  1.38 3 1026 atoms m23, and s is the stimulated
emission cross section. The decay rate from level 2 to 1
is g12  1ys30 3 1029d s21.

Please note that, although the expressions for squeez-
ing spectra are given in terms of angular frequency sfvg 
rads21d, the decay rates are in expressed in hertz sf f g 
s21d, as is customary. All spectra in this paper are plot-
ted in hertz ss21d.

We also wish to model the lossy, multiport nature of
experimental cavities. Let the total loss rate for a cavity
be given by

km  km1 1 km2 1 kabs in m , (22)

where m is the mode, either a, b, or c; the first two terms
are the loss rates through the first and the second mirrors,
respectively; and the last term is the loss rate that is due
to absorption. The mirror loss rates are related to the
mirror transmissions Tmi by

kmi 
c0Tmi

2p
, (23)

where i represents the first or the second mirror, respec-
tively; p is the geometrical cavity parimeter. The loss
rate that is due to absorption is given by

kabs in m  2
c0

2p
logfexps2a0,dg , (24)

where a0 is the absorption loss per unit distance and l is
the physical crystal length.

The interaction is scaled by the number of lasing atoms,
as shown in Eq. (10). The number of lasing atoms, N, can
be estimated one of two ways. The first is to calculate the
effective mode volume and then to use the known density
of Nd atoms in YAG s r  1.38 3 1020 atoms cm23d. An
alternative is to use an expression for the output power:

Plaser  2hnNg12kout
a a2, (25)

where h is Planck’s constant; n is the laser frequency; and
kout

a is the loss rate of the laser output mirror. Using the
measured laser power, we determine the number of atoms
by Eq. (25) as N  1017.

The models presented here are for doubly resonant
systems. This approach allows exploration of various
squeezing regimes by smoothly varying the interaction
between the modes. In order to model singly resonant
systems, we simply take the appropriate bad-cavity limit.
In this way the results of an explicitly singly resonant the-
ory (such as Paschotta et al.3) can be exactly duplicated
without loss of generality.

4. REGIMES OF SQUEEZING
Table 1 summarizes the results. The optimum pre-
dicted squeezing for both active and passive SHG is
considered for the two principal configurations: singly
resonant at the fundamental frequency, v, and dou-
bly resonant. Two limits of the squeezing are consid-
ered: ideal and realistic with pump noise. The ideal
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Table 1. Summary of Degree and Frequency of Optimum Squeezing in the Various
Regimes of Second-Harmonic Generation with Reference to the Figures; Frequencies

Are Scaled by g12, the Decay Rate from Level 2 to 1 in the Active Medium

Passive Active

Ideal Limita Realistic with Pump Noiseb Ideal Limita Realistic with Pump Noiseb

Mode 2v v 2v v 2v v 2v v

Fig. 2(a) Fig. 2(b) Fig. 5
Singly resonant

case (at v)c
Vopt  1/9 Vopt  2/3 Vopt > 0.5 Vopt > 0.95 Vopt  1/2 Vopt  1/2 No squeezing

owing to
high gp

No squeezing
owing to
high gp

Vopt  0 Vopt  0 Vopt > 1.1g12 Vopt > 1.2g12 Vopt  0 Vopt  0

Fig. 3(a) Fig. 4(a) Fig.3(b) Fig. 4(b) Fig. 6 Not illustrated Fig. 9
Doubly

resonant case
Vopt  0 Vopt  0 Vopt > 0.1 Vopt > 0.3 Vopt  0 Vopt  0 Vopt > 1/2 No squeezing

owing to
high gp

Vopt fi 0 Vopt fi 0 V > 1.5g12 V > 0.5g12 Vopt fi 0 Vopt fi 0 Vopt fi 0

aThe ideal limit to squeezing comes from consideration of a coherently pumped single-ended lossless device and is included for ease of comparison with
previous literature. However, all plots in the ideal-limit column come from consideration of the experimentally applicable case of a coherently pumped,
multiport, lossy device.

bThe realistic-with-pump-noise limit comes from consideration of the experimental case of a multiport, lossy device pumped by an intrinsically noisy
Nd:YAG laser. It is not a limit in the sense that these figures cannot be bettered —it simply summarizes the effect of laser noise, as shown in the
referenced plots.

cMore accurately, this is the bad-cavity limit of 2v. The 2v singly resonant case is not considered in this table, because effectively, the corre-
sponding bad-cavity limit (for v) cannot be reached. To see squeezing in the later case requires high pump powers that drive the interaction to-
ward the doubly resonant limit, as in Fig. 8.
limit comes from consideration of a coherently pumped,
single-ended, lossless device, and it is included for easy
comparison with previous theoretical literature. How-
ever, the plots referenced in the ideal column come from
consideration of the experimentally applicable case of a
coherently pumped multiport, lossy device. Thus, for ex-
ample, Fig. 2(a) has a limiting value 0.28 and not 1y9 as
given in the table. The difference is due to the fraction
of the squeezing that goes unobserved because it is either
absorbed within the cavity or exits through the other port.

The realistic with pump noise limit comes from con-
sideration of the experimental case of a multiport, lossy
device pumped by a Nd:YAG laser. It is not a limit in
the sense that these figures cannot be bettered—it simply
summarizes the effect of laser noise as shown in the plots
and provides a realistic guide to the noise suppression
that can be expected. In addition, the typical detection
frequencies at which the best noise suppression occurs
are listed in Table 1. They indicate the optimum point
of operation for a squeezing experiment and are given as
multiples of the linewidth of the SHG cavity at the fun-
damental v.

A. Passive Second-Harmonic Generation

1. Squeezing of Second-Harmonic Light
Good squeezing of the second harmonic requires that the
second-harmonic loss rate be higher than that of the
fundamental cavity, i.e., kc . kb. However, to obtain
perfect squeezing, it is not desirable that kc be arbi-
trarily larger than kb. To see this, we first consider
the singly resonant case (or the bad-cavity limit for 2v),
kc .. kb. Figure 2(a) shows the noise spectrum with a
coherent pump: The maximum squeezing occurs at zero
frequency, in the vicinity of the optimum value of 1y9,
and then degrades with frequency. Perfect squeezing
cannot be achieved. If a laser pump is used, as shown
in Fig. 2(b), the situation degrades further owing to the
large amounts of low-frequency noise added by the laser.
This effectively moves the maximum squeezing out in fre-
quency while reducing its value. These results suggest
a partial explanation for the results of Paschotta et al.3

They observed a deviation between theory and experi-
ment that increased as a function as a function of power.
This can be simply explained by our model as the noise
tail of the laser masking the squeezing. As the power is
increased, so does the laser noise. The other behaviors
noted by Paschotta et al. and attributed to thermal effects
(an apparent bistability with degraded squeezing on one

Fig. 2. Spectra for passive SHG in the singly resonant case.
The parameters are optimized to squeeze the second harmonic,
i.e., kc .. kb, where kb  0.604g12 and kc  77.6g12, and scaled
nonlinearity x  120000 (approximately 12 600 s21 unscaled),
for a pump power of 120 mW. The frequency axis is scaled
by g12  33.3 MHz. a, Dashed curve, spectra obtained with a
coherent pump. The lower trace is the second harmonic, and the
upper trace is the fundamental. b, Solid curve, second-harmonic
spectrum obtained with a laser pump. The squeezing is masked
at low frequencies.
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branch, a consistent point of degraded squeezing) may be
caused by parasitic parametric operation.22

How then can perfect squeezing be obtained? Consider
the doubly resonant case. It is well known that as a dou-
bly resonant system is driven toward the critical point
that marks the onset of self-pulsing, a damped oscillation
occurs in the phase quadrature of the second harmonic.
At the critical point this turns into the self-pulsing fre-
quency. Below the critical point, the squeezing is en-
hanced at the frequency of the damped oscillation with
a maximum noise suppression close to the critical point.
Thus to obtain perfect squeezing, we need to force the sys-
tem close to the critical point. We can do this by increas-
ing the power or nonlinearity or by adjusting the cavity
decay rates so that the two modes interact more strongly.

Consideration of the phase oscillation gives, after solv-
ing the linearized semiclassical equations, the frequency
for the maximum amplitude squeezing

vsq ø

(
kcs2kbda

b
2 2kbkc

2

"
kb

2
1 k1 1

s2k1d1/2a
2b

2
c2b2

kc

# 2) 1/2

. (26)

Figures 3(a) and 3(b) clearly show this effect for coherent
and laser pumps, respectively.

2. Squeezing of the Fundamental Light
While much of the behavior discussed for the second har-
monic applies to the fundamental, the two modes are by
no means identical. Experimentally, it would be possible
to build a frequency-doubler resonant only at the second
harmonic, but in cw operation, unrealistically high funda-
mental pump powers are then necessary to drive the dou-
bling process. A high-finesse cavity for the fundamental
light is employed to build up sufficient power. However,
as good squeezing of the fundamental requires that the
fundamental cavity be lossier than that of the second har-
monic skb . kcd, a doubly resonant system is necessary.
This is confirmed by the rather poor noise suppression of
the fundamental light shown in Figs. 2 and 3.

Spectra of the fundamental light from a doubly reso-
nant passive doubler, for both coherent and laser pumps,
are shown in Figs. 4(a) and 4(b), respectively. For the
coherent pump the squeezing at zero frequency is mod-
est (the maximum possible value is 2y3); however, ow-
ing to the strong interaction between the modes [de-
spite the relative difference in loss rates; c.f. Fig. 2(a)],
there is a large oscillation that dips to nearly zero. Note
that the fundamental spectra in this figure are for a
cavity in which the fundamental is strongly transmitted
(c.f. Fig. 1). The distinction is important when there is
a noisy pump beam. In general the reflected beam con-
sists of two components, the part that interacts with the
cavity (the impedance-matched component) and the part
that is reflected off the cavity without interacting. This
latter component contributes additional noise to the re-
flected beam that can mask the squeezing.

For a given power in the second-harmonic case the
squeezing is optimized as the interaction is strengthened
(i.e., x is increased). Strikingly, this is not the case for
the fundamental. At a given pump power the squeez-
ing degrades for x ! `. There is an optimum value for
the coupling parameter x. For sufficiently large x the
squeezing is degraded at all detection frequencies. This
can be understood with the following analogy. Consider
the frequency doubler as a nonlinear beam splitter, with
an incident fundamental beam split into, say, a transmit-
ted fundamental beam and a reflected second-harmonic
beam. The squeezing on the incident fundamental is di-
rectly proportional to x. As x is increased, the squeezing
on the incident fundamental increases, and, importantly,
the reflectivity of the beam splitter increases. Thus in
the limit of infinite x, all of the incident fundamental
becomes second harmonic, which is strongly squeezed.
Conversely, as x is increased, the fraction of the incident

Fig. 3. Spectra for passive SHG in the doubly resonant case.
The parameters are optimized to squeeze the second harmonic
and are as for Fig. 2, except here kc  9.06g12. a, Dashed curve,
spectra obtained with a coherent pump. The lower trace is the
second harmonic, and the upper trace is the fundamental. The
squeezing on the second harmonic is much improved with no
increase in interaction strength or pump power. b, Solid curve,
second-harmonic spectrum obtained with a laser pump. Again,
the squeezing is masked at low frequencies.

Fig. 4. Spectra for passive SHG in the doubly resonant case.
The parameters are optimized to squeeze the fundamental, i.e.,
kb . kc , where kb  3.46g12 and kc  0.362g12. The interaction
and the pump power are the same as for Figs. 2 and 3. a,
Dashed curve, spectra obtained with a coherent pump. The
lower trace is the fundamental, and the upper trace is the
second harmonic. The fundamental is squeezed well beyond
the 2y3 limit of the singly resonant case. In the appropriate
ideal case, perfect squeezing is possible. b, Solid curves, spectra
obtained with a laser pump. The squeezing is destroyed at low
frequencies. The lower trace is the fundamental, and the second
harmonic trace is above shot noise and is thus not visible on
this plot.
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fundamental that is transmitted (i.e., light remaining at
the fundamental wavelength) becomes less and less, with
a concomitant decrease in the squeezing.

B. Active Second-Harmonic Generation

1. Squeezing of the Second-Harmonic Light
For clarity we first consider active SHG under the as-
sumption that the atomic dephasing rate, gp, is zero
(Subsection 4.C explains why this is desirable). Con-
sider squeezing of the second harmonic in the singly reso-
nant limit, kc .. ka. With a sufficiently high pump rate
we obtain the spectra shown in Fig. 5. For both the fun-
damental and the second-harmonic modes the squeezing
is maximum at zero frequency and then degrades with
increasing detection frequency in a Lorentzian-like man-
ner excepting the region of excess noise that is due to
the laser’s relaxation oscillation. Noise features present
in the fundamental trace, both relaxation oscillation and
squeezing, are present on the second-harmonic trace but
are amplified away from the quantum limit.

As we are using a laser model that can produce rate-
matched squeezing,13 it is necessary to confirm SHG
process is indeed the source of the noise suppression. We
checked this by turning off the doubling process, by set-
ting x to zero, and by adjusting the pump rate such that
the output power stays the same. We saw a larger relax-
ation oscillation and no squeezing. The doubling process
can significantly damp the relaxation oscillation; a thou-
sandfold reduction is not unusual. By an increase in the
pump rate, a small amount of squeezing at low detection
frequencies can be created, which is cause by rate match-
ing. In conclusion, the preeminent cause of the squeez-
ing shown in Fig. 5 is the second-harmonic generation.

Figure 6 considers the doubly resonant case in the limit
of high pump rate. As was discussed in Subsection 4.A,
improved squeezing is expected owing to the oscilla-
tion between the fundamental and the second-harmonic
modes. However, the changes to the noise spectra are
dramatic compared with the passive case. The relax-
ation oscillation noise of both modes is suppressed, par-
ticularly that of the fundamental, and downshifted in
frequency. Two regimes of squeezing become evident,
that before and that after the relation oscillation; hence
they are called low and high frequency, respectively. The
second-harmonic low-frequency squeezing increases sig-
nificantly and attains the maximum possible value of 1y2
at zero frequency. Likewise, the high-frequency squeez-
ing is pushed very close to zero in a broad region that
is much larger than even the bandwidth of the second-
harmonic cavity. Both the high- and the low-frequency
squeezing regimes have been described separately in pre-
vious works. The value of Fig. 6 is twofold: It demon-
strates both regimes can coexist for the one parameter
set, and it highlights the relationship between them.

2. Squeezing of the Fundamental Light
Consider, as in Fig. 7, an active doubler resonant at the
second harmonic (the bad-cavity limit for v), ka .. kc.
A high pump is necessary simply to allow lasing. As
the interaction is strong, both the low- and the high-
squeezing regimes are evident (c.f. Fig. 5); however, un-
like the second-harmonic case, the noise features of the
second harmonic are no longer amplified versions of those
of the fundamental. The low-frequency squeezing of the
fundamental is less than that of the second harmonic; the
high-frequency squeezing is greater.

In the doubly resonant case, ka . kc, the low-frequency
squeezing tends to be buried under the relaxation oscil-
lation, and it is not robust compared with the second-
harmonic case. Although the high-frequency squeezing
survives, further consideration of this case is omitted for
reasons explained in Subsection 4.C.

C. Effect of Nonzero gp

In the previous subsections the atomic dephasing (the
decay rate of the lasing coherence), gp, was considered to
be zero. In solid-state systems, such as Nd:YAG, this is
not even approximately true, as there is a large dephasing

Fig. 5. Spectra for active SHG in the singly resonant case. The
parameters are optimized to squeeze the second harmonic, i.e.,
kc .. ka, where ka  0.6g12 and kc  36000g12, scaled non-
linearity x  50000 (approximately 5220 s21 unscaled), pump
rate G  8 3 1025g12sGthresh  4.08 3 1029g12d, and dephas-
ing rate gp  0. a, Dashed curve, fundamental spectrum. b,
Solid curve, second-harmonic spectrum. Noise features that
are present on the fundamental, both relaxation oscillation and
squeezing, are amplified away from the quantum limit.

Fig. 6. Spectra for active SHG in the doubly resonant case.
There are two plots, covering different frequency ranges. The
parameters are optimized to squeeze the second harmonic and
are as for Fig. 5 except here kc  36g12. a, Dashed curve,
fundamental spectrum; b, Solid curve, second-harmonic spec-
trum. Note the two regions of squeezing: low frequency, before
the relaxation oscillation, with maximum squeezing of 0.5; and
high frequency, above the relaxation oscillation frequency, with
maximum squeezing of almost zero.
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Fig. 7. Spectra for active SHG in the doubly resonant case.
The parameters are optimized to squeeze the fundamental, i.e.,
ka . kc , where ka  3600g12 and kc  0.6g12, x  50000, pump
rate G  3.99 3 1022g12 sGthresh  2.92 3 1025g12d, and dephas-
ing rate gp  0. a, Solid curve, fundamental spectrum. Both
the relaxation oscillation and the squeezing at low frequencies of
the fundamental is less than the second harmonic. b, Dashed
curve, second-harmonic spectrum.

value because of coupling between phonons of the crystal
and the energy levels of the laser. Even in gas lasers,
the dephasing rate is high owing to collisional processes.
What, then, is the effect of large gp?

In the passive case the output spectrum of the laser be-
comes noisier: The relaxation oscillation is down shifted
in frequency, and it is amplified, even at high frequencies
in the very tail of the oscillation. The extra pump noise
leads to a further degradation of squeezing, as the mini-
mum point of the spectrum is reduced and moved up in
frequency by a small amount. The effect is minimal.

In the active case, increasing gp has notable effect.
The laser threshold increases; the critical-point threshold
decreases, in some parameter regimes it is lower than the
laser threshold, and the system is consequently unstable;
and considerable noise is introduced at frequencies below
the dephasing value. The squeezing on the fundamental
is particularly sensitive, with even low dephasing values,
such as gp  0.5 ka, completely masking the squeezing.
The squeezing of the second harmonic survives, albeit in
a somewhat unlikely regime. This is illustrated in Fig. 8,
in which the singly resonant system of Fig. 6 is evaluated
for dephasing values of gp equal to 0, 18g12, and 0.97g12,
which corresponds to gp equal to 0.97kc. Note that the
degradation of the low-frequency squeezing is much less
pronounced and that it does not visibly degrade between
the latter two values of gp.

This behavior is perhaps best considered as follows.
Dephasing adds considerable phase noise inside the laser
cavity, which is added directly to the fundamental and is
consequently transmitted to the second harmonic. The
survival of the low-frequency second-harmonic amplitude
squeezing reflects the fact that, when using direct de-
tection, one sees only amplitude noise at zero frequency.
However, at higher frequencies the cavity mixes in the in-
ternal phase noise. Thus the higher the dephasing rate,
the narrower the region of squeezing, as the phase noise
at a given frequency is stronger. Since the parametric
process also takes place in second-harmonic generation,
the phase noise on the second-harmonic generates addi-
tional amplitude noise on the fundamental. As a conse-
quence, none of the low-frequency fundamental squeezing
survives.

Contrast this with the passive case. Here the internal
phase noise of the laser is not directly involved in the
doubling process. The narrow output linewidth of the
laser filters the phase noise considerably; consequently,
only a relatively small amount of excess noise is added to
the pump.

It should be noted that the dephasing rate of Nd:YAG at
room temperature is much higher than the values consid-
ered in Fig. 8: we approximate it in this paper by gp 
9000g12. At this value the high-frequency squeezing for

Fig. 8. Spectra showing the effect of nonzero dephasing on
active SHG, with squeezing optimized for the second harmonic.
Excepting the dephasing rates, other parameters are as for
Fig. 6. There are two plots, covering different frequency ranges.
For a–c, the significantly squeezed trace is the second harmonic.
a, Dotted curves, fundamental and second-harmonic spectra
for gp  0. b, Long–short-dashed curves, fundamental and
second-harmonic spectra for gp  18g12. Both the low- and
the high-frequency squeezing is degraded. c, Solid curves,
fundamental and second-harmonic spectra for gp  35g12.
Compared with b, the high-frequency squeezing is further
degraded, whereas the low-frequency squeezing is much less
affected.

Fig. 9. Demonstration that, in the active case, low-frequency
squeezing of the second harmonic is possible even with very
high dephasing. The parameters are as for Fig. 6, except here
gp  9000g12 and pump rate G  1.8 3 1025g12. Our model
does not include pump noise of the laser, which in real systems
will totally mask this effect.
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both the active fundamental and the second-harmonic
cases is destroyed, as classical noise is introduced at fre-
quencies , 9000g12 (300 GHz). To access this squeezing
in the laboratory, one must find a way of reducing gp,
either through judicious choice of the medium or cooling.

Theoretically the low-frequency squeezing of the second
harmonic persists even for this value of the dephasing.
To understand this, consider the system discussed for
Fig. 6 except with dephasing rate gp  9000g12 and pump
rate G  1.8 3 1025g12. This is illustrated in Fig. 9.
Squeezing near the 50% limit occurs at zero frequency, but
it degrades quickly with increasing detection frequency
to the quantum limit (by 56 kHz). It should be stressed
that our laser model ignores both pump noise for the
laser and thermal noise, which in real lasers raises the
noise floor at low frequencies, masking this effect com-
pletely. In addition, unrealistically high pump powers
are required, or alternatively, a system with an extremely
low threshold.

5. SUMMARY

A. Squeezing with Passive Second-
Harmonic Generation
Passive second-harmonic generation is already used as a
source of bright squeezed light. As reported elsewhere,6

there is excellent quantitative agreement between the
passive model presented here and experiments. Thus we
confidently predict significant improvement in squeezing
in present experiments by reduction of the pump noise.
Ideally this is achieved by lasers with a narrower ampli-
tude noise linewidth; because such systems are not read-
ily available, an alternative is to place a narrow-linewidth
mode-cleaning between the laser and the SHG system. It
is interesting to contemplate whether recent results ob-
tained in the rather different field of passive traveling-
wave SHG need be considered in light of the pump noise
coupling.23

The issue of pump noise aside, there is likely to be fur-
ther, notable, improvement in passive squeezing owing to
technological advances. The effective interaction can be
further improved by use of materials with a higher nonlin-
earity (such as KNbo3), by use of a lower absorptive loss,
which is a significant limit to the circulating intracavity
power and thus the interaction, or both. To date, detec-
tion efficiencies often have limit measurements, particu-
larly in the visible; however, the recent report24 of very-
high quantum-efficiency detectors suggests this restric-
tion may soon be relaxed. In the future, reliable doubly
resonant systems, probably based on the hemilithic cav-
ity, should overcome the current locking difficulties and
allow tailored squeezing, i.e., large values at nonzero fre-
quencies. The prospects for squeezing with passive SHG
are bright.

B. Squeezing with Active Second-Harmonic Generation
Although active SHG is experimentally attractive and
other analyses have found the theoretical potential to
be high, we find here that active SHG is not a suitable
source of squeezed light. This is primarily because of
the high dephasing values that are inherent in most layer
systems: Only if an active system with small dephasing
can be found would active SHG be suitable for squeezing.
Even then, the issue of high pump rates would need to
be addressed. Unfortunately, any of these options offers
experimental complications at least as large as that of
doubly resonant passive SHG and with no extra benefit
as regards the squeezing.

APPENDIX A
For the passive case the drift, A, and the diffusion, D,
matrices are, respectively,
Af1, 1g  ka Af2, 2g  ka Af7, 1g  2g23sJ3 2 J2d
Af1, 7g  2g23 Af2, 10g  2g23 Af7, 7g  sg13 1 g23 1 g12

1 2gpdy2
Af7, 9g  g23a

Af9, 1g  g23J23 Af8, 1g  g23J23

Af9, 2g  g23J23 Af8, 2g  g23J23 Af10, 2g  2g23sJ3 2 J2d
Af9, 7g  g23a Af8, 7g  g23a Af10, 9g  g23a
Af9, 8g  2g23 2 g13 Af8, 8g  G 1 g23 1 g13 Af10, 10g  sg13 1 g23 1 g12 ,

12gpdy2
Af9, 9g  g12 Af8, 9g  G

Af9, 10g  g23a Af8, 10g  g23a Af3, 1g  2skakb1d0.5

Af3, 3g  kb

Af4, 2g  2skakb1d0.5 Af6, 4g  xbp Af3, 4g  2xc

Af4, 3g  2xcp Af6, 6g  kc Af3, 5g  2xbp

Af4, 4g  kb
Af4, 6g  2xb Af5, 3g  xb Af5, 5g  kc

Df3, 3g  xc Df7, 7g  g232J23a
Df4, 4g  xcp Df7, 10g  Gss1d 1 s1 1 2gpds3

Df9, 9g  2g232J23a 1 g12J2
1 g23J3

Df8, 8g  2g232J23a 1 g23J3 1 GJ1 .
1 g13J3

Df10, 9g  2g12J23  Df7, 9g Df8, 9g  2g232J23a 2 g23J3

Df10, 10g  g232s23a
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For the active case the drift, A, and the diffusion, D, matrices are, respectively,
Af1, 1g  kb Af4, 2g  xa Af6, 8g  g23a
Af1, 2g  2xcp Af4, 4g  kc

Af1, 3g  2xa Af7, 1g  g23J23
Af1, 5g  2g23 Af5, 1g  2g23sJ3 2 J2d Af7, 2g  g23J23

Af5, 5g  sg13 1 g23 1 g12 1 2gpdy2 Af7, 5g  g23a
Af2, 1g  2xc Af5, 7g  g23a Af7, 6g  2g23 2 g13 ,
Af2, 2g  kb Af7, 7g  g12
Af2, 4g  2xa Af6, 1g  g23J23 Af7, 8g  g23a
Af2, 8g  2g23 Af6, 2g  g23J23

Af6, 5g  g23a Af8, 2g  2g23sJ3 2 J2d
Af3, 1g  xa Af6, 6g  G 1 g12 Af8, 6g  2g23a
Af3, 3g  kc Af6, 7g  2G Af8, 8g  sg13 1 g23 1 g12 1 2gpdy2

Df1, 1g  xc Df5, 5g  g232J23a Df7, 5g  2g12J23
Df2, 2g  xc Df5, 8g  GJ1 1 g12J3 1 2gpJ3 Df7, 7g  2g232J23a 1 g12J2 .

1 g23J3

Df7, 8g  2g12J23
Df6, 7g  2g232J23a 2 g23J3 Df8, 8g  g232J23a
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