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Two qubit gates for photons are generally thought to require exotic materials with huge
optical nonlinearities. We show here that, if we accept two qubit gates that only work
conditionally, single photon sources, passive linear optics and particle detectors are suf-
ficient for implementing reliable quantum algorithms. The conditional nature of the
gates requires feed-forward from the detectors to the optical elements. Without feed
forward, non-deterministic quantum computation is possible. We discuss one proposed
single photon source based on the surface acoustic wave guiding of single electrons.

One of the earliest proposals [1] for implementing quantum computation was based on
encoding each qubit in two optical modes together containing exactly one photon. However
it is extremely difficult to unitarily couple two optical modes containing few photons. Here
we consider the question of what can be achieved in principle using combinations of only the
simplest optical elements: passive linear optics, photodetectors, and single photon sources.

The dynamics implemented by passive linear optics conserves the total number of bosons
in the modes. It is therefore convenient to describe them by their effect on the creation
operators. Specifically, if U is the unitary operator associated with the evolution, then U

takes the state a(l)T|0) to

va®'o)y = va®'uto) (1)
m) |
> Uma™'0), (2)

using the fact that U'|0) = |0). The matrix defined by the coefficients U,,; must be unitary,
and furthermore, for all unitary U,,;, there is a sequence of phase shifter and beam splitter
evolutions which implements the corresponding operation [2]. For a named optical element
X, let U(X) be the unitary matrix associated with X according to the above rules. The

(tm)

unitary matrices associated with phase shifters Py and beam splitters By are:

UP,M) = ¢

b cos(f) —sin(@
U(Bo( )) = <sin((9)) cos(0§ ) )

General linear optical elements have Hamiltonians which consist of terms at most quadratic
in the annihilation and creation operators.

We choose the traditional encoding of photonic qubits based on a “dual rail” logic, using
two modes and one photon;

0)r = [1)1@]0)2 (3)
01 ®[1)2 (4)
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The modes could be two input modes to a beam splitter distinguished by the different direc-
tions of the wave vector, or they could be distinguished by polarisation. In the case of a beam
splitter a single qubit gate is easily implemented by the linear transformation

a;(0) = U(60)'a;U (6) (5)
with Up(0) = exp |i0(ala; + ala];)] Thus

a1(8) = cosfa; —isinfay
az(0) = cosfas —isinfa

The description in the logical basis becomes,
|0>L—>C0501‘0>L—7:Si1191|1>[, (6)

In addition to a single qubit gate, universal quantum computation requires at least a two
qubit gate. A simple choice is the conditional sign shift gate,

[e)ely)e = €™V |z)Lly)r (7)

Unfortunately this is difficult to implement with the optical qubits as photons do not interact
except via matter. The mutual Kerr nonlinear phase shift is one such interaction,

Unr = exp[iﬂalala;az] (8)

In practice it is not possible to get a single photon phase shift of 7, which this transformation
implies, without adding a considerable amount of noise from the electronic systems that
mediate the interaction. However, as we now show, we can get an effective nonlinear sign
shift with linear optical transformations, such as a beam splitter, by coupling the modes
of interest to ancilla modes and performing single photon detection on these ancilla modes.
Under the right circumstances the conditional states corresponding to observed counts at the
ancilla modes will effect the required conditional phase shift.

We first give a simple illustration of the principle. Suppose we mix two modes at a beam
splitter and count photons only on one output mode, say mode a2. We will assume that mode
as is initially in the vacuum state. The conditional state of mode a;, given a count n is given

by
[%™)1 = Enly))y (9)
where |1); is the input state for mode a; and the measurement operator is

E, = 2(n|U(6)[0)2. (10)
The case of interest here, where n = 0,1, is given by
- o (cos@—1)" 4
E, = ) (&) (11)
n=0 '
El = COSs GEO — SiIl2 GaIanl (12)

In this way a simple beam splitter can implement a conditional phase shift for a particular
number state in mode a;j.
We seek to implement the conditional nonlinear sign shift for the state of mode a; defined
by,
|¢) = @0|0)o + a1]1)1 + a2(2)1 — a0|0)1 + a1]1)1 — a2(2)1 (13)

We use two ancilla modes, a2, a3 which can be regarded as a representing a single qubit in
dual rail logic: |0)r = |1)2]|0)s |1)r = |0)2|1)s In the first step, single qubit rotation is
performed on modes 2 — 3, prepared in state |0)r, with the unitary operator Uz3(6:),

|0)r, — cos61|0), —isinby|1)L (14)
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In the second step, mode as of this qubit is coupled to the signal mode,

U12(02) [COS 01|0>L - isin01\1>L] |'(,ZJ>1 (15)

where |t)1 is the signal input state. In the third step a final qubit rotation through an angle 03
is again performed on modes a3, a3 with the unitary Us3(63), and a photon counter records a
count on each of the qubit modes. We will show that the conditional sign shift is implemented
when the count is ny = 1, ng = 0. This corresponds to projecting out the logical state |0)r
on the qubit in modes as, as.

The corresponding conditional state is then seen to be,

\¢(0)>1 = cos 0 cos 03E(1)(02)\¢)1 — sin 6, sin 93 E(©) (02)|¥)1 (16)
For the desired conditional nonlinear sign shift gate (NS gate) we require,
cos i cosf3cosfy —sinfysinf; = A
cos 01 cos 03 cos 205 — sin @y sinf3cosfy = A
cos 0 cos 3 cos Oz (cos” By — 2sin® fy) — sin @ sinfz cos® B = —A

The solution is easily seen to be §; = 0y = 22.5° 65 = 114.47° with A = —1/2. The success
probability is A\2 = 1/4.

In figure 1 we show how two non deterministic NS gates can be used to implement a two
qubit conditional NOT gate, a CNOT gate. We employ dual rail logic such that the “control
in” qubit is represented by the two bosonic mode operators cy and cy. A single photon
occupation of ¢y with ¢y in a vacuum state will be our logical 0, which we will write |H) (to
avoid confusion with the vacuum state). Whilst a single photon occupation of ¢y with cg in
a vacuum state will be our logical 1, which we will write |V'). Of course superposition states
can also be formed. Similarly the “target in” is represented by the bosonic mode operators
ty and ty with the same interpretations as for the control. The beamsplitters, B1, B2, B3
and B4 are all 50:50. The use of the “H”, “V” nomenclature alludes to the standard situation
in which the two modes of the dual rail logic are orthogonal polarisation modes. Conversion
of a polarisation qubit into the spatial encoding used to implement the CNOT gate can be
achieved experimentally by passing the photon through a polarising beamsplitter, to spatially
separate the modes, and then using a half-wave plate to rotate one of the modes into the
same polarisation as the other. After the gate, the reverse process can be used to return the
encoding to polarisation. As success requires the two NS gates to work the overall probability
of success is 1/16.

The layout of figure 1 contains two nested, balanced Mach-Zehnder interferometers. The
target modes are combined and then re-separated forming the “I”interferometer. One arm
of the T interferometer and the ¢y mode of the control are combined to form another inter-
ferometer, the “C” interferometer. NS gates are placed in both arms of the C interferometer.
The essential feature of the system is that if the control photon is in the cy mode then there
is never more that one photon in the C interferometer, so the NS gates do not produce a
change, the T interferometer remains balanced and the target qubits exit in the same spatial
modes in which they entered. On the other hand if the control photon is in mode cy then
there is a two photon component in the C interferometer which suffers a sign change due to
the NS gates. This leads to a sign change in one arm of the T interferometer and the target
qubit exits from the opposite mode from which it entered.

The CNOT gate previously described can be considerably simplified at the expense of a
small decrease in success probability. A major simplification is achieved by operating the NS
gates in a biased mode. The idea is to set the parameters 8; and 63 in the NS gates to zero,
i.e. the beam splitters are totally reflective. This removes the interferometers from both the
NS gates, greatly reducing the complexity of the gate. Summing over the paths as before we
find that the NS operation becomes

[¥) = 2l0) + BI1) +7/2) = [¢') = Vm2a0) + (1 = 2m2)B[1) — vm2(2 = 3m2)v[2)  (17)

when 6; = 63 = 0 and we have put 72 = cosf;. There is no solution such that the “0”,
“1” and “2” components scale equally, so the gate is biased. As a result it is not possible
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Fig. 1. A CNOT two qubit gate implemented using two non deterministic nonlinear sign shift
gates.

to pick an 73 such that the T interferometer is simultaneously balanced for both the case of
a photon in cg, and the case of a photon in cy,. This problem can be solved by including
some additional attenuation. One of a number of possible scenarios is shown in figure 2. The
NS gates have been replaced by the beamsplitters B5 and B6 which have reflectivities 7.
Additional beamsplitters, B7 and B8, of refectivities 7; have been inserted in beams cy and
t' respectively. The state of the system at point z in figure 2 (conditional on a single photon
being detected at outputs aj, and a3, and no photons appearing at outputs vy, and vs,) is
given by

)y = —5mI1001) £ V(1 - 2) 5(1100) — [1010) (18)

if the control is initially in |[H) and

¥y = %(\/772777(1 — 212)(/0101) + |0011)) F (1772(2 — 372)(|0200) — [0020)))) (19)

if the control is initially in |V'). It is now possible to simultaneously balance the T interfer-
ometer for both inputs by choosing 72 = (3 — v/2)/7 and 1; = 5 — 3/2. CNOT operation
then occurs with a probability n2 ~ 0.05. All the conditional moments of the original CNOT
gate are reproduced but with the probabilities of the non-zero moments reduced from 1/16
to approximately 1/20. All other properties of the original gate are retained.

A cascaded sequence of non deterministic gates is useless for quantum computation as the
probability of many gates working in sequence would decrease exponentially. We now show
how to avoid this by using a teleportation protocol to only implement a gate in a quantum
circuit if it works. In essence we hold back the gate until we are sure it works and then teleport
it onto the required stage of the computation. The idea that teleportation can be used for
universal quantum computation was first proposed by Gottesman and Chuang [3]. The idea
is to prepare a suitable entangled state for a teleportation protocol with the required gate
already applied. We use a non deterministic NS gate to prepare the required entangled state,
and only complete the teleportation when the this stage is known to work. The teleportation
step itself is non deterministic, but we will show that by using the appropriate entangled
resource the teleportation step can be made near deterministic. The near deterministic tele-
portation protocol requires only photon counting and fast feedforward. We do not need to
make measurements in a Bell basis.
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Fig. 2. A simplified CNOT two qubit gate.

A basic quantum teleportation protocol for transferring the state ag|0), + a1|1) to mode
3 begins with adjoining the “entangled” ancilla state |t1), = |01), + |10}, to mode 1. (We
omit normalisation constants wherever possible.) Note that in this case, the ancilla state is
easily generated from |10), by means of a beam splitter.

The second step is to measure modes 0 and 1 in the basis |01), 4 ]10),,|00), £ |11} (the
“Bell basis”). We decompose the measurement into two steps. The first step determines the
parity p of the number of bosons in modes 0 and 1 (“parity measurement”). The second
determines the sign s in the superposition. Consider the case where p = 1. Then if s = ‘47,
the state of mode 2 is ag|0), + a;|1),. If s = ‘-, the state is ag|0) — a;|1),, which can be
restored to the starting state by using a phase shifter. For p = 0, the situation is similar
except that |0), and |1), are flipped (and cannot be easily un-flipped using linear optics). The
key property of quantum teleportation is that the input state appears in mode 2 up to a
simple transformation without having interacted with mode 2 after the preparation of the
initial ancilla state.

Consider the parity measurement. Applying a balanced beam splitter to modes 0 and
1 and then measuring the number of photons in the two modes successfully determines the
parity, and if it is odd, the sign. As a result, it can be used to perform the teleportation with
success probability 1/2. We refer to the partial Bell-state measurement as BM; and to the
corresponding teleportation protocol as T 5.

The next step is to use Ty /2 to design a conditional sign flip c-0,/4 which succeeds with
probability 1/4. To see how to do this, observe that to implement c-o, on two bosonic qubits
in modes 1,2 and 3, 4 respectively, we could try to first teleport the first modes of each qubit
to two new modes (labelled 6 and 8) and then apply c-o, to the new modes. When using
T, /2, we may need to apply a sign correction. Since this commutes with c-o, there is nothing
preventing us from applying c-o, to the prepared state before performing the measurements.
The implementation is shown in Fig. 3 and now consists of first trying to prepare two copies
of |t1) with c-o, already applied, and then performing two BM; measurements. Given the
prepared state, the probability of success is (1/2)2. The state can be prepared using c-0; /16
which means that the preparation has to be retried an average of 16 times before it is possible
to proceed.

To improve the probability of successful teleportation to 1 — 1/(n + 1), we generalise the
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Fig. 3. A c-sign two qubit gate with teleportation to increase success probability to 1/4.

initial entanglement by defining
[t ey = D 11)710)"79]0)7 1), (20)
j=0

The notation |a)? means |a)|a) ..., j times. The modes are labelled from 1 to 2n, left to right.
Note that the state exists in the space of n bosonic qubits, where the k’th qubit is encoded
in modes n + k and k (in this order).

To teleport the state ag|0), + a1|l), using |t,) use the measurement BM,, implemented

by first applying an n + 1 point Fourier transform f‘n+1 on modes 0 to n. f‘n+1 is defined by
(P ) = ™ /Vn + 1, (21)

where w = ¢?2™/(»*+1) and k,1 € 0...n. It is by definition implementable with passive linear
optics. Using the parallel fast Fourier transform (see page 795 of [4]), it can be implemented
with O(nlog(n)) elements and depth O(log(n)), for n a power of 2. Alternatively, a multiport

generalisation of the Mach-Zehnder interferometer can be used [5]. After applying F, 1,
BM,, measures the number of photons in each of the modes 0 to n.

Suppose BM,, detects k bosons altogether. It is possible to show [6] that if 0 < k < n+1,
then the teleported state appears in mode n + k£ and only needs to be corrected by applying
a phase shift. The modes 2n — [ are in state 1 for 0 <! < (n— k) and can be reused in future
preparations requiring single bosons. The modes are in state 0 forn —k <l <n. If k =0 we
learn that the input state is measured and projected to |0), and if &k = n + 1, it is projected
to |1),. The probability of these two events is 1/(n + 1), regardless of the input. We will
make use of the fact that failure is detected and corresponds to measurements in the basis
|0), |1) with the outcome known. Note that both the necessary correction and which mode
we teleported to are unknown until after the measurement.
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There are two problems with the methods shown so far. The first is that for large n, the
obvious networks for preparing the required states have very low probabilities of success. It
is therefore desirable to avoid using the methods with large n. The second problem is that to
get decent success probabilities for coupling gates does large n, particularly if it is necessary
to meet the accuracy requirements of reliable quantum computing.

To achieve exponential improvements in the probability of success for gates and state
production with small n, we use quantum codes and exploit the properties of the failure
behaviour of ¢-0,2/(n41)2- For details see Knill et al. [6]. As a result it is possible to iterate
the methods to efficiently achieve essentially perfect quantum computation. This iteration
is known as concatenation and underlies the accuracy threshold theorems of fault tolerant
quantum computation [7, 8, 9, 10].

To conclude we summarise the physical requirements for linear optics quantum computa-
tion. The Scheme requires: (i) single photon sources (ii) fast efficient single photon detectors,
(iii) low photon absorption and (iv) fast electro-optics feed forward. There is currently a
great deal of interest in schemes for single photon sources[11] and recently a particularly use-
ful scheme was demonstrated.We expect that reliable and fast single photon sources are not far
away. In the mean time however the basic elements of linear optics QC could be demonstrated
with conditional non deterministic single photon sources, such as are used in parametric down
conversion experiments[12]. The requirement for fast single photon detectors that can dis-
tinguish zero, one and two photons is a difficult one to meet with current technology, but is
achievable by a variety of means. Low photon absorption is not in principle a problem. As
was demonstrated by Knill et al.[6], there are linear optics protocols that can detect for pho-
ton loss. The requirement of fast electro optic feed forward is perhaps the biggest hurdle to
overcome for demonstrating a simple quantum circuit. The near deterministic teleportation
steps require some kind of delay line before measurement results are fed forward. This places
strong bandwidth requirements on any electro-optical processes. Despite these difficulties we
expect that the basic elements of linear optics quantum computation will be demonstrated in
the next few years and in the long run reliable linear optics quantum computation may be no
more difficult than other schemes for large scale quantum computation.
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