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Abstract

Controlling quantum states of light is of central importance to many fields of modern physics.

The technology to do so underpins the only feasible means for long-distance quantum commu-

nication using quantum-key-distribution, and plays a pivotal role in the application of quantum

computing, quantum metrology and investigations of fundamental physics. Motivated by these

applications, in this thesis we present a number of experimental results that demonstrate an

enhanced level of control over photonic states. First, we tackle one of the most important tech-

nological issues currently facing the field, namely the creation of pure multi-photon Fock states

from pulsed parametric downconversion. Our technique shows a marked improvement over pre-

vious photon sources when employed for quantum information tasks. At a more foundational

level, we experimentally examine the properties of quantum correlations in the temporal do-

main, where our results highlight surprising differences between its spatial-domain counterpart

of multipartite entanglement. Finally, we experimentally implement single- and multi-photon

quantum walks in the discrete- and continuous-time regimes respectively. Quantum walks

have received much attention in recent years due to their vast applicability in quantum infor-

mation science, especially for quantum simulation and emulation. On this front we use the

quantum walk formalism to perform a full experimental simulation of topological phases in a

1-dimensional configuration. Aside from being the first demonstration of topological phases

in this regime, our system exhibits unprecedented control over the topological properties in a

quantum system. As such we are able to observe the exotic behaviour of trapped bound states,

and discover the new phenomenon of paired bound states—a feature unique to periodically

driven systems.
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Introduction

A
s humans we have always strived to understand the rules that govern the way things

around us operate. These rules will often emerge as a consequence of studying the

patterns of our world, from the way the sun rises each day to the predictability of the

ocean tides. Both of these effects can in part be attributed to the Earth’s rotation on its axis,

although studying them is not enough to explain why the Earth rotates with the frequency it

does, or even how the Earth came to be where it is in the first place. Answering these questions

required a deeper study of our universe, in fact both mysteries can be solved by observing the

formation of solar systems outside of our own [1].

In a similar way we have found ourselves looking deeper into the microscopic world to

explain many macroscopic phenomena. One of the more famous examples is the explanation

of the energy distribution from a black-body emitter, of which a correct description was first

formulated in 1900 by Max Planck. His discovery, that one should consider the energy field

emitted from a black-body as a collection of discrete packets of energy, or ‘quanta’, is heralded

as the birth of quantum theory. More than a hundred years after this discovery we have

transformed our view of the world. We now have a concrete picture of how the universe

behaves at the atomic and subatomic scales and are able to observe things governed by the

laws of quantum mechanics.

Quantum mechanics is undoubtedly the most successful theory in modern physics owing to

its precise predictions of many experimentally observable phenomena. Consequently there is

now a vast portfolio of experiments that demonstrate its success. Soon after the theory’s incep-

tion, concepts such as quantisation were beautifully exemplified by the photo-electric effect [2]

(quantisation of the electromagnetic field) and the Stern-Gerlach experiment [3] (quantisation

of electron spin). Other more ambitious experiments, such as Bose-Einstein condensation [4, 5]

which was not realised until over 70 years after its prediction [6, 7], demonstrated that quantum

theory applied equally well to larger systems, not just to single particles.

Central to the above experiments is the discovery of wave-particle duality, the idea that

sometimes particles act as waves and sometimes waves act as particles. It is this concept that

underpins much of quantum theory’s success in describing the naturally occurring phenomenon

that, before it, had no physical explanation. The wave-like behaviour of electrons for example

explains atomic orbitals and therefore the structure of elements in the periodic table and how

they chemically bond [8]. The history of quantum physics is littered with many successes of this

kind which, until recently, simply proved quantum mechanics as a tool for describing interesting

physical behaviour.

This journey of exploring the quantum world inside the laboratory has left us with a plethora

of experimental techniques to isolate, manipulate and probe quantum systems. As such we are
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now entering a new phase in the story of quantum physics in which quantum systems can

be coherently engineered and used to our advantage for quantum communication, quantum

computation and quantum simulation [8]. This thesis is a contribution to this effort,

focused specifically in the field of quantum optics.

Overview of this thesis

This work is predominantly a thesis by publication. Chapters 3, 4, 6, 7 and 8 are all peer

reviewed research papers, four of which I am either the lead or second author. Each paper

is self contained, meaning that a reader with a strong background in quantum physics could

follow the ideas and arguments throughout them. For this reason, those readers who are mainly

interested in the experimental results of this work may wish to move directly to these chapters.

However, for the purpose of completeness additional introductory Chapters 1, 2 and 5 serve to

provide the less technically familiar reader with the necessary tools to understand the thesis as

a whole.

Although the common theme running throughout this thesis is the use of single photon

states for quantum information and quantum simulation, as an entirety, this is the only aspect

that ties all of the projects together. Apart from Chapters 6 and 7, each research project

does not necessarily follow as a result of any other project. However, as the title of this thesis

suggests there are two main parts to this work: photonic quantum information processing and

photonic quantum walks given in Parts I and II respectively. Their constituent chapters are

set out as follows.

Part I: Photonic Quantum Information Processing

In Chapters 1 and 2 we lay down the key physical concepts and mathematical tools forming

the groundwork of quantum information with photons. The first of these chapters focuses

specifically on the framework of quantum information and quantum computation, but in an

architecture independent way. That is, the concepts of storing, manipulating and measuring

quantum information are dealt with on an abstract level rather than pertaining specifically to

photonics. In Chapter 2 we introduce quantum information from a photonic perspective and

discuss some of the finer details of experimental photonic quantum information processing.

The first new results of this work are given in Chapter 3 where we demonstrate a technique

to reduce the level of noise from the most widely used source of single photon states: spon-

taneous parametric downconversion (SPDC). Since SPDC relies on spontaneous emission it is

inherently non-deterministic and can produce more than one pair of photons simultaneously

which introduces noise into the measurement statistics. With our technique we demonstrate

a significant improvement in the visibility of two-photon interference as well as the fidelity of

quantum computation protocols.

In Chapter 4 we investigate the properties of quantum correlations in time. Traditionally,

quantum correlations refer to the joint properties of multiple quantum particles that are spa-
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tially separated. Here instead we look at how the measurements on a single particle at time t1

are correlated with a non-destructive measurement performed on the same particle at time t0,

where t0 < t1. Additionally, in the same study, we present the temporal form of Hardy’s para-

dox performed on the same particle, as opposed to the previously studied space-like separated

measurements performed on two particles.

Part II: Photonic Quantum Walks

In the second part of this thesis we study single- and multi-photon quantum walks in one and

two dimensions. As the experimental techniques, for example those of single photon generation

from SPDC and non-classical interference, are identical to those discussed in Chapter 2 we omit

them here. Instead we begin with Chapter 5 with a mathematical overview of the two types of

walks studied in this thesis, the discrete- and continuous-time quantum walks.

In Chapter 6 we experimentally demonstrate a discrete-time single-photon quantum walk

on a line in space. With the same experimental setup we investigate the effects of absorbing

boundaries on the survival probability of the quantum walker, as well as the effect of controlled

amounts of decoherence where we are able to observe the quantum-to-classical transition.

In Chapter 7 we use the same system as above to investigate the topological properties of

photonic quantum walks. Taking the idea of a quantum simulator we encode specific quantum

walk Hamiltonians at different points across the walk lattice. Importantly, by implementing

topologically distinct Hamiltonians we are able to observe the exotic topological behaviour of

bound states at the interface between topologically distinct regions.

Finally, in keeping with the theme of quantum walks, in Chapter 8 we demonstration a

two-photon quantum walk in a three-dimensional waveguide structure. As well as highlighting

the feasibility of these waveguide structures for emulation of coherent quantum phenomena, we

identify some of their properties that are are still poorly understood, for example the polarisa-

tion dependent coupling between waveguides.

In the remaining pages we draw together the work in this thesis and make some concluding

remarks on future research directions in these areas.
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CHAPTER 1

Introduction to quantum computation

C
omputation refers to the act of calculation or information processing on a computing

machine. The idea is to use a computer to run an algorithm—a well defined set of

rules—to calculate a function’s outcome or process information. With this method

we can use computers to solve a variety of different problems in physics. In classical physics

for example, the rules that govern the motion of classical particles in a potential are those

of Newtonian mechanics. For quantum particles we use quantum mechanics to define the

equations of motion. From a computational perspective, the key difference between classical

and quantum systems is that the computational resources needed to compute the outcome of

classical and quantum systems scale differently with the size of the problem.

Take for example a system of N classical coins each of which are equally likely to have the

outcome values c = {0, 1}. We toss all the coins and upon them landing record their values.

Although there is a total of 2N possible outcomes, we only require N bits of information to

record the state of the system. In the quantum case each coin can be in a superposition of both

coin values q = {0, 1}, meaning for N quantum coins we require 2N bits of information to fully

describe the system. It is this exponential increase in parameter space that ultimately renders

classical computers inefficient for solving problems in the quantum regime. An algorithm’s

efficiency is related to how the number of individual steps, or computer operations, required to

run the algorithm scales as the problem size increases. Inefficient algorithms are those where

the size of computer needed to run the algorithm scales exponentially with the problem size,

conversely, efficient algorithms are those where the computer size scales at most polynomially

with the problem size.

As an alternative to using classical computers for solving the dynamics of quantum systems,

why not use a quantum system itself? The concept of a quantum computer was first proposed

by Feynman in “Simulating Physics with Computers” [1] and takes advantage of the inherent

quantum nature of such a device. In essence a quantum computer would work in the following

way. We encode an initial state into the state of a quantum system and evolve it under some

interactions that also obey the laws of quantum mechanics. In some cases both the initial state

and the interactions could form the algorithm of the quantum computer. Importantly, as the

quantum system naturally keeps track of the entire state of the system, simply measuring its

state when the algorithm is complete is enough to determine the answer.

Both classical and quantum computers are restricted in the type of functions they can

evaluate—namely computable functions—but in some cases, a quantum computer is more ef-
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1.1. Basic quantum information

ficient at solving problems than a classical one. For example, the factoring of large integers

into prime numbers, for which there is no known efficient classical algorithm, was shown to be

efficiently computable on a quantum computer by Shor [2]. The prospect of such computational

speed-ups over classical algorithms is one reason behind the excitement for quantum comput-

ing, though quantum computers also have the potential to make quantum systems easier to

simulate. This idea takes advantage of the fact that some physical quantum systems can be

made to ‘look’ like other quantum systems. That is, the equations that describe the physics of

a quantum system—given by the system’s Hamiltonian—is simply a mathematical object and

therefore in principle could be encoded using many different physical systems. The task then

is to find an easily controllable quantum system whose interactions can be tailored such that

it simulates a Hamiltonian of interest: this would be a quantum simulator.

With the prospect of outperforming classical computers and simulating new physics, real-

ising a scalable quantum computer or simulator has become the goal of many experimental

groups around the world. The crux of this task is the development of a highly controllable

quantum system that can be prepared in a known state, measured with great certainty and

sufficiently isolated from its environment such that it is not disturbed by it. In addition there

must be a set of quantum interactions that the experimenter can perform which is capable of

performing any quantum computation, in the circuit model of quantum computation this set

of interactions is called a universal set. These criteria are the essence of the DiVincenzo criteria

for a scalable quantum computer [3].

1.1 Basic quantum information

Quantum computation is a sub-field of the more broader field of quantum information—the

study of how information can be stored, manipulated and computed in the quantum world.

As such I will continue this discussion with an overview of basic quantum information theory.

In particular I will focus on the mathematical framework that is important to understand this

thesis.

1.1.1 Qubits

What makes quantum information totally different from its more familiar counterpart, classical

information, is quantum superposition. Quantum superposition is the notion that a system’s

property can assume two distinct values at the same time, a concept that is perfectly acceptable

in the quantum world but utterly absurd in a classical one. As an example consider the most

fundamental unit of classical information a binary digit or bit for short. On classical computing

machines that operate via electrical signals1 a bit of information can be represented as a voltage.

For example in transistor-transistor logic (TTL) circuits if a signal S < V0 the bit is assigned

1One of the first computers, designed by Charles Babbage, was capable of simple arithmetic and was proposed
to be entirely mechanical.
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1.1. Basic quantum information

Figure 1.1: Measuring a classical voltage signal. a) A voltage representing the classical bit

value ‘0’ and b) a voltage representing a bit value of ‘1’. The classical world does not allow a

system to be in the state ‘0’ and ‘1’ simultaneously.

the value ‘0’ and if S > V1 the bit is assigned the value ‘1’, see Fig. 1.1. Clearly in this classical

scenario the signal cannot be both ‘0’ and ‘1’ simultaneously.

In the quantum case the most basic unit of information is the quantum bit or qubit. Qubits,

like classical bits, are two level systems with the distinct states zero and one, denoted in the

Dirac notation as |0〉 and |1〉 respectively [4] . However, unlike bits they can exist in any

superposition of these states and the general form of a qubit |ψ〉, is given by

|ψ〉 = eiγ(cos(θ/2) |0〉+ eiφ sin(θ/2) |1〉), (1.1)

where γ, θ and φ are real numbers. The factor eiγ is called the global phase and has no

measurable effects, it can therefore be ignored, meaning that the state of a qubit is reduced to

|ψ〉 = cos(θ/2) |0〉+ eiφ sin(θ/2) |1〉 . (1.2)

The qubit state can be visualised using the two dimensional surface of a sphere which we will

call the qubit sphere2, where θ and φ are polar coordinates for a position on the surface, see

Fig. 1.2.

Importantly, the states |0〉 and |1〉 are vectors which form a complete basis set, or spanning

set, in a two-dimensional inner product space H2, this particular set is called the computational

basis. That is, |0〉 and |1〉 span a vector space V , where the inner product maps V × V to the

complex number space C. The inner product, or dot product as it is sometimes called, is a

means of determining the orthogonality of two vectors in V . For two vectors of equal length

2Historically this was called the Poincaré sphere which was originally used to describe the polarisation states
of light. More recently a rotated version of the Poincaré sphere, called the Bloch sphere, has become the common
way to describe a two-level quantum system. These two pictures are equivalent up to a π/2 rotation.
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1.1. Basic quantum information

Figure 1.2: Qubit states represented by points on a sphere. All pure states live on the surface

of the qubit sphere and are coherent superpositions of the computational basis states |0〉 and

|1〉. θ and φ are the polar coordinates of the pure states. The red circle depicts the real plane,

that is, all the pure states α |0〉+ β |1〉, where α and β real numbers. The green (connected by

|+〉 and |−〉), black (connected by |+i〉 and |−i〉) and red (connected by |0〉 and |1〉) lines are

the x, y and z axes respectively.

|x〉 and |y〉 the inner product is given by

〈x |y 〉 ≡
[
x∗1 . . . x

∗
i . . . x

∗
n

]


y1

...

yi
...

yn


=
∑
i

x∗i yi, (1.3)

where ∗ denotes the complex conjugate [5]. Any qubit state can be expressed in terms of

the states |0〉 and |1〉 which are orthogonal, therefore satisfying the following inner products,

〈0 |1〉= 〈1 |0〉=0 as well as 〈0 |0〉= 〈1 |1〉=1. For finite dimensional spaces, such as that for

qubits, the inner product space H2 is called a Hilbert space.

Finally, it is oftentimes useful to express the state of a qubit explicitly as a vector, so that

it looks like

|ψ〉 = α

[
1

0

]
+ β

[
0

1

]
= α |0〉+ β |1〉 , (1.4)

where α and β are complex numbers that satisfy the relation |α|2 + |β|2=1.

1.1.2 The density operator

Equations 1.1-1.4 can only describe pure states, that is, an entirely coherent superposition of

the basis states. However, given an ensemble of qubits one might find that in addition to pure
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1.1. Basic quantum information

states the ensemble also encompasses a statistical mixture of |0〉 and |1〉. These states require

a more complete description known as the density operator or density matrix formalism,

ρ =
∑
i

pi |ψi〉〈ψi| , (1.5)

where pi is the probability of being in the state |ψi〉. In reality one will always encounter

mixedness since no quantum system is able to maintain perfect coherence. The density operator

is therefore a more useful tool for real world quantum physics than the pure state formalism.

As a measure of this coherence the purity of ρ is given by Tr(ρ2) which is < 1 for mixed states

and unity for pure states. More generally, the lower bound for purity is Tr(ρ2)=1/d for a

d-dimensional system.

1.1.3 Mixed states and decoherence

Like many aspects of quantum mechanics the exact meaning of a mixed state is open to inter-

pretation. A mixed state can be thought of as a statistical mixture of many particles each in

a pure state where performing a measurement reveals a particle’s state (Copenhagen interpre-

tation), or that each particle is in reality a mixed state containing less than unity information

(many-worlds interpretation) [6]. Despite these differences we do have a good understanding

of how mixture occurs in practice.

Mixture results from the interaction of a quantum state with an (internal or external)

environment [6]. The environment in this context can be pictured either as another quantum

system or in some cases a large thermal bath, where the interaction between it and the quantum

system lead to quantum correlations between them. Such interactions can either be intentional,

in the case of interacting two qubits for example, or an unwanted coupling of a quantum system

to the experimental apparatus. More formally, as a result of the quantum system’s interaction

with another environment it is said to become ‘entangled’ with it (see Section 1.1.5). Recovering

and accounting for these correlations would require knowing the corresponding effects that

occurred to the environment as a result of its interaction with the quantum system. In cases

where the environment is an unwanted coupling with the surrounding experimental apparatus,

recovering these correlations is an impossible task, hence such information is lost, leading to

mixture in the quantum state—this process is called decoherence. Throughout this thesis I

will detail the mechanisms that lead to mixture in each experiment and in some cases suggest

remedies to reduce their effects.

1.1.4 Multiple qubits

The usefulness of any computing device comes from the ability to manipulate many pieces of

information. Thankfully in quantum information keeping track of multiple qubits is a simple

extension of the single qubit case with the addition of the tensor product. The tensor product

is a mathematical tool used to combine multiple vector spaces into one [5]. A single pure qubit
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1.1. Basic quantum information

lives in a vector space (see eq. 1.1), or Hilbert space, with dimension 2, since we require exactly

2 numbers to completely describe it. To describe a pure two-qubit system with individual states

|ψA〉 and |ψB〉, we take the tensor product of their individual state vectors in the following way

|Ψ〉 = |ψA〉 ⊗ |ψB〉 =

[
αA

βA

]
⊗

[
αB

βB

]
=


αAαB

αAβB

αBαB

αBβB

 . (1.6)

The result is a state vector which lives in a Hilbert space of dimension 4. In general the

dimension of the Hilbert space increases exponentially as 2N , where N is the number of qubits. It

is this exponential increase in the Hilbert space—and therefore the number of parameters needed

to describe the quantum system—which renders classical computers inefficient for simulating

quantum systems. Mixed states are dealt with in the same way by replacing the state vectors

in Eq. 1.6 with the corresponding density operators.

The state |Ψ〉 in Eq. 1.6 is called a product or separable state because it can be described

either as a state in the combined Hilbert space HAB=HA⊗HB, or two separate states |ψA〉 and

|ψB〉 in HA and HB, respectively. However, this is not the case for all multiple qubit states, as

some qubits share correlations, meaning that a description of the entire state cannot be given

as a product of two separate states in their respective individual Hilbert spaces. In some cases

these states share a type of correlation known as entanglement, which we will discuss now.

1.1.5 Two-qubit entanglement

The ability to entangle multiple qubits is believed to be a crucial element in quantum compu-

tation [7]. When multiple particles are entangled a full description of the system can only be

given by their joint properties. Individual measurements on the particles reveal that they have

no full identity of their own—they are in mixed states. An important class of entangled states

are the two-qubit Bell states,

∣∣Φ±〉 =
1√
2

(|0〉A ⊗ |0〉B ± |1〉A ⊗ |1〉B)∣∣Ψ±〉 =
1√
2

(|0〉A ⊗ |1〉B ± |1〉A ⊗ |0〉B), (1.7)

where ‘A’ and ‘B’ denote the two parties who have access to the qubits: Alice and Bob respec-

tively. We can prove that individually each qubit on its own is mixed by inspecting the state

of one qubit regardless of the other. Mathematically this is equivalent to performing a partial

trace on the system. If we have a joint system given by the density operator ρAB then we can

‘trace out’ Bob’s half of the system to reveal only Alice’s half by performing the partial trace

given by,

ρA = TrB(ρAB). (1.8)
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1.1. Basic quantum information

The notation TrB is referred to as ‘tracing out’ the system B so that we are only left with ρA.

For any two state vectors in A |a1〉 and |a2〉, and likewise for B |b1〉 and |b2〉, the partial trace

is defined as,

TrB(|a1〉〈a2| ⊗ |b1〉〈b2|) ≡ |a1〉〈a2|Tr(|b1〉〈b2|), (1.9)

noting that Tr(|b1〉〈b2|)= 〈b1 |b2 〉. Finally, combining Eqs. 1.8 and 1.9 we have,

ρA = TrB(ρAB)

= TrB

(∑
i,j

pi,j |ai〉〈aj| ⊗ |bi〉〈bj|

)
=

∑
i,j

pi,j |ai〉〈aj|Tr(|bi〉〈bj|). (1.10)

As an interesting example of the partial trace, let us we choose |Ψ+〉 from Eq. 1.7 and trace

out Bob’s qubit so that the state of Alice’s qubit is given by,

ρA = TrB
(∣∣Ψ+〉〈Ψ+

∣∣)
=
|0〉〈0| 〈1 |1〉+ |0〉〈1| 〈1 |0〉+ |1〉〈0| 〈0 |1〉+ |1〉〈1| 〈0 |0〉

2

=
|0〉〈0|+ |1〉〈1|

2

=
I

2
, (1.11)

which is a completely mixed state since the purity, Tr(ρ2
A)=1/2.

1.1.6 Unitary evolution and quantum gates

In an idealised theoretical framework the evolution of a quantum state |ψ〉, can be described

by the operator U , such that the adjoint of this operator, U † (the reverse of U), returns the

initial state,

UU † |ψ〉 = U † |ψ′〉 = I |ψ〉 , (1.12)

where I is the identity operator, which is the same dimension as U with matrix elements given

by Iij=δij, where δij is the Kronecker delta function. This, property of an operator known

as unitarity, is just as attainable in reality as pure states are (see above), i.e., not at all. It

describes the evolution of a quantum system which is completely isolated from the environment

and therefore entirely free from decoherence. This issue aside, it is a useful starting point in

describing quantum state evolution.

We visualise quantum state evolution using the circuit model of quantum computation,

shown in Fig. 1.3. A line depicts a quantum state and operators on that line either manipulate

the quantum state or measure it. Double lines represent a classical information channel and

the flow of information runs from left to right [5].
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1.1. Basic quantum information

Figure 1.3: a) Single qubit Pauli operators depicted in the circuit model of quantum compu-

tation. b) Multiple qubit gates span multiple quantum states, and in some special cases are

simply depicted as lines connecting two states as for the controlled-NOT gate, shown here. c)

Measurement is depicted by this meter symbol with a classical information channel shown as

two parallel lines.

Single qubit gates

Figure 1.3a shows the quantum circuit model depicting a class of single qubit unitaries called the

Pauli operators. Of all the single qubit unitaries the Pauli operators are the most important

since they form a complete set that span the 2×2 vector space of Hermitian unitaries, i.e.

U †m=Um and U2
m=Um. Consequently a combination of the Pauli operators can be used to

perform arbitrary single qubit gates. The Pauli operators X, Y , Z and I are given by

σ1 ≡ X ≡

[
0 1

1 0

]
σ2 ≡ Y ≡

[
0 −i
i 0

]

σ3 ≡ Z ≡

[
1 0

0 −1

]
σ0 ≡ I ≡

[
1 0

0 1

]
. (1.13)

Single qubit quantum gates are also commonly called rotations as they can be depicted as

rotations about axes on the qubit sphere. The rotation of a state by an angle θ about the axes

~n = (nx, ny, nz) on the qubit sphere is given by

R~n(θ) ≡ e−iθ~n·~σ/2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
(nxX + nyY + nzZ). (1.14)

And an arbitrary single qubit unitary is given by

U = e(iδ)R~n(θ), (1.15)

where e(iδ) is a physically insignificant global phase shift. Figure 1.4 shows the the action of

one of the most widely used single qubit rotations, the Hadamard.

The Hadamard’s most important property in relation to this thesis is that it can be used to
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1.1. Basic quantum information

Figure 1.4: The action of the Hadamard operator on single qubit states. The Hadamard does a

θ=π rotation about the axis ~n=(1/
√

2, 0, 1/
√

2), shown by the dashed red line. The qubit states

are shown by the yellow arrows. a) |0〉 → (|0〉+ |1〉)/
√

2, b) (|0〉− i |1〉)/
√

2→ (|0〉+ i |1〉)/
√

2

and c) α |0〉+ β |1〉 → (α + β) |0〉+ (α− β) |1〉.

create a balanced state in the computational basis. That is, it performs the following unitary,

H

[
α

β

]
=

1√
2

[
1 1

1 −1

][
α

β

]
=

1√
2

[
α + β

α− β

]
. (1.16)

This operator becomes important in Part II on quantum walks. Here, the direction a quantum

particle moves on a one-dimensional lattice is governed by its qubit state (often called the coin

state in this context) and in the quantum case this can be both left and right!

Multiple qubit gates

Multi-qubit gates lie at the heart of any quantum computation protocol. In particular, they

allow the state of one or some of the qubits entering the gate to have a significant effect on the

state of another. An important class of multi-qubit gates are those that perform control oper-

ations. One of the major breakthroughs in quantum computing theory was the realisation that

any n-qubit transformation can be achieved using many instances of the two-qubit controlled-

NOT (CNOT) gate and single-qubit gates [8, 9, 10]; such a set of gates is known as a universal

set. Since then, much attention has been paid to both the efficient use of CNOT gates for quan-

tum computing as well as its physical realisation inside the laboratory. During the early stages

of experimental quantum computation, realising a CNOT gate was a highly coveted goal due

not only to its universality proof but also for its ability to produce maximally entangled states,

see Section 1.1.5. Although, it has also been shown that any two-qubit gate which generates

even a small amount of entanglement, is universal for quantum computation [11].

The CNOT circuit shown in Fig. 1.3b performs the Pauli-X operation on a target qubit |y〉t
(bottom qubit in the picture), conditioned on the state of the control qubit |x〉c (top qubit in

the picture) and in the computational basis performs the following unitary

UCNOT |x〉c |y〉t = |x〉c |y ⊕ x〉t (1.17)
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1.1. Basic quantum information

where ⊕ is addition modulo two [5]. To generate a maximally entangled state using a CNOT

operation consider preparing the control qubit in the state |+〉=(|0〉+ |1〉)/
√

2 and interacting

it with a target qubit prepared in |0〉 such that we get

UCNOT |+〉c |0〉t =
|0〉c |0〉t + |1〉c |1〉t√

2
. (1.18)

This is the |Φ+〉 state given in Section 1.1.5.

An important gate for this thesis is the controlled-SIGN gate or CZ gate which performs

a controlled Pauli-Z operation on the target qubit. It is equivalent to the CNOT with the

addition of the single qubit Hadamard gate on either side of the target qubit.

• •
=

H H •

The CZ gate is therefore equally powerful with regard to universal quantum computing and the

generation of maximally entangled states. In Chapter 2 we describe this gate in greater detail,

and cover the real world implementation of it in Chapters 3 and 4.

1.1.7 Quantum measurement theory

After the initial preparation of the qubit states, and evolution under quantum logic gates, mea-

surement is the final step of a quantum information task. Broadly speaking the experimenter

is interested in the following question: given the state |ψ〉 and a set of measurement operators

{Mm} which act on the state space of |ψ〉 and whose measurement outcomes are m, what is

the probability that m will occur? This probability is given by

p(m) = 〈ψ|M †
mMm |ψ〉 . (1.19)

Since the probability of obtaining all measurement outcomes must sum to unity,

1 =
∑
m

p(m) =
∑
m

〈ψ|M †
mMm |ψ〉 , (1.20)

it follows that
∑

mM
†
mMm=I, this is called the completeness equation [5]. As a result of imple-

menting the measurement operator, the state of the system immediately after the measurement

is changed to

|ψ′〉 =
Mm |ψ〉√

〈ψ|M †
mMm |ψ〉

=
Mm |ψ〉√
p(m)

. (1.21)
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1.1. Basic quantum information

Projective measurements

The most important type of measurement needed to understand this thesis is the projective

measurement. The projector of rank-n,

PW =
∑
m∈Wn

Pm =
∑
m∈Wn

|γm〉〈γm| , (1.22)

acting on the state |ψ〉 gives the components of this state parallel to |γm〉 ∈W n, where W n

is a subspace of the total Hilbert space of |ψ〉, Hd. Projectors by definition are orthogonal,

i.e. PW ′PW = δW ′,WPW , meaning that in the space Hd there can be at most d projectors

each of rank-one. When PW in Eq. 1.22 is the sum of this set of rank-one projectors, {Pm},
the measurement is said to be ‘made in the |γm〉 basis’. In the simplest case of a pure qubit

which has a total Hilbert space of size 2, there are at most 2 projectors, for example mea-

suring in the |±i〉=(|0〉 ± i |0〉 /
√

2 basis requires the projection operators P|+i〉= |+i〉〈+i| and

P|−i〉= |−i〉〈−i|. These projection operators are also the eigenvectors of the Pauli-Y operator,

so this measurement will often be referred to as a measurement of the spin3 along the y-axis.

Importantly, projectors are Hermitian with the consequence that the eigenvalues or measure-

ment outcomes of a projection are always real and therefore correspond to physical attributes

of the measurement device. With this we can define the measurement observable O, given by

its spectral decomposition

O =
∑
m

λmPm, (1.23)

where λm are the corresponding eigenvalues of the projectors Pm. The average value of the

observable 〈O〉, or expectation value, on the state |ψ〉, is given by

〈O〉 =
∑
m

λmp(m)

= 〈ψ|O |ψ〉 . (1.24)

This is the value of the observable after performing many instances of the same measurement

operator O, on a large ensemble of identically prepared quantum states |ψ〉.

Nondestructive measurements

As well as performing two-qubit operations for computation and producing entanglement, the

control gates discussed in Section 1.1.6 can also be utilised to make non-destructive measure-

ments (also called nondemolition measurements) on a single qubit [12]. To perform a non-

destructive measurement on the signal qubit |ψ〉s, we entangle it with an ancillary qubit, or

meter |ψ〉m, which will be destructively measured. As an example take the signal qubit (acting

as the control) in the unknown state α |0〉 + β |1〉 and interact it with the meter qubit (the

target) prepared in the state |0〉, in a CNOT gate. The action of the CNOT gate produces the

3For historical reasons ‘spin’ can be used to denote the value of any two-level quantum system, since the
electron spin was the first physical system to exhibit the same symmetries associated with a qubit state.
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1.1. Basic quantum information

following output,

UCNOT (α |0〉s + β |1〉s)⊗ |0〉m = α |0〉s |0〉m + β |1〉s |1〉m , (1.25)

which is a maximally entangled state. The fully destructive measurement of the meter will give

‘0’ with probability |α|2 and therefore project the signal into the state |0〉, or ‘1’ with probability

|β|2, projecting the signal into the state |1〉. A non-destructive measurement done in this way

can be thought of as a perfect projection measurement of the signal qubit without destroying

it. In the photonic architecture of quantum information processing this type of measurement

is particularly important, since in the usual scenario one is forced to destroy the quantum

information carrier (the photon), as a result of detection, in order to obtain information about

the observable.

It should be noted that this type of measurement is entirely reliant upon the amount of

entanglement between the signal and meter qubits after interaction in the two-qubit gate. To

demonstrate this we consider preparing the meter in the state (|0〉 + |1〉)/
√

2 which upon

interaction in the CNOT gate with the unknown signal qubit gives

α√
2
|0〉s |0〉m +

α√
2
|0〉s |1〉m +

β√
2
|1〉s |0〉s +

β√
2
|1〉s |1〉m . (1.26)

This state exhibits no entanglement between signal and meter qubits, and a measurement of the

meter simply renders the signal in its original input state [12, 13]. In general, the strength of the

measurement can be continuously changed by altering the meter qubit state |ψ〉m =γ |0〉+ γ̄ |1〉,
where γ2 + γ̄2=1. In this case the strength of the measurement is governed by a knowledge

parameter, K = 2γ2−1 [13]. To gain maximum knowledge about the signal qubit we set K=1,

(or equivalently γ=1), and minimum knowledge when K=0 (γ=1/
√

2). When 0 < K < 1 we

refer to the measurement as a weak measurement, and in this framework they are generalisations

of the non-destructive measurement [14].

Non-destructive measurements become particularly important in Chapter 4 where we are

required to make two sequential measurements on a single qubit. The first measurement must

necessarily be non-destructive in order to preserve the quantum system for the second mea-

surement.

1.1.8 Quantum state tomography

The measurement of a single observable of an unknown quantum state is not enough to gain a

full description of it. For instance, if we make a projective Pauli-Z measurement on the single

qubit state |ψ〉 = (|0〉+eiφ |1〉)/
√

2 we gain the outcomes ‘0’ and ‘1’ each with a probability 1/2

telling us that indeed the state is an equal superposition of |0〉 and |1〉, but this information

tells us nothing about the the phase φ which could be anything between 0 and 2π. To gain full

knowledge of an unknown quantum state we must perform multiple measurements in different

bases in a protocol known as state tomography [5]. Intuitively quantum state tomography for a
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1.1. Basic quantum information

Figure 1.5: An intuitive picture of quantum state tomography of a qubit. Reconstructing a

quantum state is done using multiple projective measurements onto different bases, or axes of

the qubit sphere. This is equivalent to looking at the qubit sphere from different angles.

single qubit is like taking the qubit sphere and viewing it from different angles, a toy example

is shown in Fig. 1.5.

Another requirement is that we have access to a large number of identically prepared copies

of the unknown state |ψ〉 such that we can build up enough measurement statistics to estimate

its state. If we had just a single copy of the unknown state it would be impossible to determine

its exact state due to the restrictions placed upon us by Heisenberg’s uncertainty principle.

Qubit state tomography

In the general case, for a d-dimensional system, we choose d2 density operators,

|ψ1〉〈ψ1| , . . . , |ψd2〉〈ψd2| , (1.27)

which form a complete set over the space of d-dimensional matrices. For a single qubit which

lives in a space with dimension d=2 the normalised Pauli operators, X/
√

2, Y/
√

2, Z/
√

2 and

I/
√

2, form a complete set that span the Hilbert space of qubit states, such that an arbitrary

qubit state (pure or mixed) can be written as

ρ =
1

2
(σ0 + ~r · ~σ), (1.28)

where σ0 and ~σ=(σ1, σ2, σ3) are the Pauli operators (see Section 1.1.6) and ~r=(rx, ry, rz) is a

vector in the qubit sphere given by ri=Tr(σiρ). Given n copies of the state ρ we can obtain

the expectation values of the Pauli operators, Tr(σiρ), by summing the measurement outcomes

and dividing by n,

〈σi〉 = Tr(σiρ) =
n∑
i

λi/n, (1.29)
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1.1. Basic quantum information

where λi are the outcomes of each projective measurement (equal to the eigenvalue of the

measurement operator, either +1 or −1). We then have an estimate of the state ρ given by,

ρest =
1

2

∑
i

〈σi〉σi. (1.30)

This is only an estimate because in reality the number of measurements we perform n, is finite

and hence there is a finite error4 associated with each expectation value 〈σi〉. As a consequence

the estimated density operator ρest can sometimes lie outside the space of physically possible

quantum states. Mathematically a non-physical density operator is one whose eigenvalues do

not lie in the range 0 ≤ λ ≤ 1 [15], it is said to be non-positive.

In these cases in order to attribute a physical quantum state to the measured system we use

a maximum likelihood technique. This involves searching the entire space of physically possible

quantum states to find the one that is most likely to produce the measured observables given

in Eq.1.29. A more thorough discussion of maximum likelihood tomography can be found in

references [15, 16].

4Since each measurement is independent, by the central limit theorem this error scales as 1/
√
n.
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CHAPTER 2

Quantum computing with photons

T
he mathematical constructs described in the last chapter can apply equally well to

any discrete two-level quantum system: two well isolated energy levels of an atom [1],

spin states of a single electron [2], or the flux quanta of a superconducting loop with a

Josephson junction [3]. The commonality of all of these systems is the concept of quantisation—

that some physical attributes of a system exist only in discrete units rather than continuously—

an idea started with the discovery of photons.

2.1 Quantum physics with single photons

Photons are discrete packets of energy that make up the electromagnetic field [4, 5]. Their

existence was originally proposed by Max Planck in a bid to solve the so called ‘ultraviolet

catastrophe’ of the late 1800s. This puzzle was borne out of the original description of black

body radiation given by the Rayleigh-Jeans law. It implied that the power per unit frequency

increased beyond physicality as the frequency of light emitted from a black body increased. In

1900 Max Planck solved this issue by considering the energy radiating from the black body as

made up of discrete packets of energy or quanta [4]. The concept of photons of light was later

ironed out in 1905 by Einstein who used it to describe the photoelectric effect [5]. This leap

from the Maxwellian description of light as a continuous field in space and time to discrete

packets of energy localised in space and time is heralded as one of the founding discoveries

leading to the birth of quantum mechanics.

After this time the world view of physics began to shift quite rapidly from classical to quan-

tum. Old experiments such as Young’s double slit were revived using single electrons [6], C60

molecules, so-called “buckyballs” [7] and more recently even larger molecules [8] to demonstrate

the quantum phenomena of superposition and wave-particle duality. Surprisingly, it wasn’t

until 1986 that the quantisation of the light field was demonstrated conclusively via photon

anti-correlation effects at a beam splitter [9]. Meanwhile, in 1981 Alain Aspect et al. [10] pro-

duced highly non-classical two-photon states to experimentally confirm what is considered the

defining feature of quantum mechanics—entanglement (see Section 1.1.5).

The Aspect experiment made use of polarisation entangled two-photon states from an atomic

cascade source. However, such sources are difficult to set up and give very low count rates,

rendering experiments with 3 or more simultaneous photons near impossible. In comparison,

what is now the most ubiquitous source of paired photons—spontaneous parametric downcon-
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2.2. Photonic quantum computing

version (SPDC)—can be set up with ease and gives much higher count rates (see Section 2.2.5)

of unentangled [11] and entangled photon states [12].

With a reliable, high-yielding and easy to use source of single photons the prospect of

building useful devices to exploit the quantum nature of light became a real prospect for many

scientists. Quantum computation is one such goal and we will now continue our discussion with

the specifics of a photonic quantum computer.

2.2 Photonic quantum computing

The task of building a quantum computer is by no means an easy one. Most importantly

there must be a quantum system that is simultaneously isolated from its environment and

precisely controllable by its user. Herein lies the appeal of using light to store and manipulate

quantum information. Photons are almost entirely free from decoherence: information can be

stored in a photon for long times and therefore over long distances. This property makes them

ideal for use in quantum communication protocols and such schemes are already commercially

available [13]. However, the goal of quantum computation is different, here we want to interact

carriers of quantum information, in an analogous way to classical logic gates, by using quantum

logic gates (see Section 1.1.6). Encoding information into photonic qubits, and taking advantage

of photon-photon interactions to perform quantum logic operations is one way of doing this

and is the basis for the discrete variable approach to quantum computing with photons.

2.2.1 Photonic qubits

In Chapter 1 we discussed the properties of qubits without alluding to a specific physical

architecture in which they can be realised. We will now discuss how a qubit state can be

encoded using the quantised optical field. Although there are a variety of degrees of freedom

which can be utilised to realise qubit states with photons we will only focus on the two that

are important to understand this work, namely polarisation and dual-rail qubits. For a more

comprehensive overview see references [14, 15, 16]. To start with we will review some of the

basic nomenclature of quantum optics that will aid our discussion on photonic qubits.

Fock space

When dealing with discrete particles such as photons we work in a Hilbert space (defined in

Section 1.1.1) known as Fock space. In Fock space we represent n particles in the mode k using

the notation |nk〉. The states in this space obey all the rules normally associated with a Hilbert

space (see Section 1.1.1), that is,

〈nk |mk 〉 = δnm and
∞∑

nk=0

|nk〉〈nk| = 1. (2.1)
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2.2. Photonic quantum computing

We operate on this space using the annihilation and creation operators (field operators) ak and

a†k respectively, which have the following effects on the number states |nk〉,

ak |nk〉=
√
nk |nk−1〉 , a†k |nk〉=

√
nk+1 |nk+1〉 , a†kak |nk〉=nk |nk〉 . (2.2)

The number operator is given its own symbol Nk=(a†kak) [17]. Finally, when dealing specifi-

cally with photons we must employ Bosonic commutation relations between the creation and

annihilation operators given by,

[ak, ak′ ] = [a†k, a
†
k′ ] = 0 [ak, a

†
k′ ] = δkk′ , (2.3)

where the k’s represent distinguishable modes. The most general form of a single particle state

is that given by the coherent superposition in many distinguishable modes

|ψsingle〉 =

(∑
k

cka
†
k

)
|0〉 , (2.4)

where |0〉 represents the vacuum state and |ck|2 is the normalised probability of finding the

particle in the kth mode, therefore
∑

k |ck|
2 =1 [14].

Single photons

The Hamiltonian that describes the quantised electromagnetic field in free space is given by

H =
∑
k

~ωk
(
a†kak +

1

2

)
, (2.5)

where ωk is the angular frequency of the optical field in mode k [17]. To create a single photon

we act on the vacuum mode |0〉 with the creation operator, such that at time t=0, the single

photon state is |ψ(0)〉= |1〉. Solving the time-dependent Schrödinger equation we get,

|ψ(t)〉 = e−iωkt |ψ(0)〉 . (2.6)

This is exactly what we expect for a single photon, that is, an excitation with a phase that

changes at a rate given by the frequency of the excitation. Given this framework we will continue

our discussion with the description of two important optical elements, the phase shifter and

the beam splitter.

Phase shifters and beam splitters

The two crucial building blocks of a photonic quantum computer are the phase shifter which

imparts a phase on a particular optical mode and the beam splitter that mixes multiple optical

modes. Physically a phase shifter is a material, with length L, which has a different index

of refraction n′, to that of its surroundings n. When the optical field passes through such a
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material it picks up a phase shift φ, proportional to the refractive index contrast given by,

φ =
(n′ − n)ωkL

c
, (2.7)

where c is the speed of light. The phase shifter acting on a single optical mode is described by

the interaction Hamiltonian HPS= − ~φa†kak. Importantly, this Hamiltonian commutes with

the photon number operator Nk, that is, [HPS, Nk]=0, meaning it conserves photon number

therefore giving the unitary transformation,

UPS = eiφa
†
kak . (2.8)

The operators a†k and ak are effected under the transform aout=UPSainU
†
PS, such that [16],

a†out = eiφa
†
inaina†ine

−iφa†inain = eiφa†in. (2.9)

To describe the beam splitters we introduce two distinct optical modes 1 and 2 with cre-

ation (annihilation) operators a†1(a1) and a†2(a2) respectively. The beam splitter Hamiltonian

is H=θeiφa1a
†
2 − θe−iφa

†
1a2, which mixes the two modes with a weighting θ. It follows that,

a†1,out = cos θa†1,in + ie−iφ sin θa†2,in

a†2,out = ieiφ sin θa†1,in + cos θa†2,in. (2.10)

Physically a beam splitter is a dielectric medium which is partly reflective and partly transmis-

sive. In practice we talk of beam splitter reflectivities and transmissivities, given by η= sin2 θ

and 1−η= cos2 θ, respectively. The phase factors ie±iφ ensure that the transformation conserves

photon number and therefore unitarity [16].

2.2.2 Encoding and manipulating photonic qubits

We can encode qubits onto a single photon by choosing two distinguishable (orthogonal) optical

modes represented by the creation and annihilation operators a†1, a
†
2 and a1, a2 respectively.

Importantly, the modes 1 and 2 represent two entirely distinguishable states of a two-level

photonic degree of freedom e.g. the polarisation. In equivalent notations, an arbitrary qubit

state is given by, (
αa†1 + βa†2

)
|0〉 = α

[
1

0

]
+ β

[
0

1

]
. (2.11)

Using the matrix notation we can define both phase shifters and beam splitters as rotations of a

qubit state on the qubit sphere (see discussion in Section 1.1.6). The phase shifter is equivalent

to a rotation about the z-axis on the qubit sphere, given in matrix form as,

Rz(φ) = e−iφσ3/2 =

[
e−iφ/2 0

0 eiφ/2

]
, (2.12)
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where σ3 is the Pauli-Z operator. And the beam splitter operation is given by a rotation about

the y-axis of the qubit sphere,

Ry(θ) = e−iθσ2 =

[
cos θ sin θ

− sin θ cos θ

]
, (2.13)

where σ2 is the Pauli-Y operator, and we have chosen the phase of the beam splitter, φ=π/2.

The two operators, Rz(φ) and Ry(θ) are sufficient for performing an arbitrary single-qubit

unitary, given by the Z-Y decomposition [15],

U = eiαRz(β)Ry(γ)Rz(δ), (2.14)

where α, β, γ and δ are real numbers. Suffice to say that all single qubit unitaries can be

decomposed as a series of phase shifters and beam splitters [15].

Polarisation qubits

Polarisation refers to the direction of oscillation of the electric field component of the optical

field, see see Fig 2.1. It is a two-level quantum system that possesses identical symmetry

properties to those of qubits. Therefore the polarisation states can be mapped directly onto

the qubit sphere1. Traditionally, we take the horizontally and vertically polarised states to

represent the computational basis, that is |H〉= |0〉 and |V 〉= |1〉 respectively. In the Fock

state picture, an arbitrary polarisation qubit is written as,

|ψ〉 =
(
αa†H + βa†V

)
|0〉 = α |H〉+ β |V 〉 , (2.15)

where a†H and a†V are the creation operators for horizontally and vertically polarised modes

respectively and |0〉 is the vacuum state.

Manipulating polarisation in the lab is done using birefringent materials: materials whose

property of refraction is anisotropic and therefore dependent on the polarisation direction of

the input field. In particular, birefringent materials display two different indices of refraction

no and ne, for ordinary- and extraordinary-waves, polarised along and perpendicular to the

optic axis respectively [18] . From these materials a wide variety of polarising optics can be

made including wave plates that rotate the direction of polarisation and polarisers that reflect

and transmit specific polarisations. For a full description of these optics refer to reference [18].

In polarisation encoding, single qubit unitaries are performed with half- and quarter-wave

plates (HWP and QWP respectively). Wave plates are made from thin pieces of birefringent

material, usually calcite (CaCO3). When light passes through a wave plate the two orthogonal

components of the electric field, e and o, travel through at varying speeds leading to a phase

shift between them and a resulting change to the polarisation. When the extraordinary wave is

aligned with the optic axis of the birefringent material, half- and quarter-wave plates introduce

1For historical reasons the equivalent of the qubit sphere for polarisation is called the Poincaré sphere. The
two names will be used interchangeably throughout this thesis.
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Figure 2.1: Polarisation of the light field. The two orthogonal components of the electric field,

Ex and Ey shown in red and blue respectively, specify the resulting direction of the electric

field oscillation. In a) the Ex and Ey components of the electric field are out of phase by −π
to give the anti-diagonal state |A〉= 1√

2
(|H〉 − |V 〉), in b) Ex and Ey have a phase difference of

−π/2 to give the right-circularly polarised state, |R〉= 1√
2

(|H〉 − i |V 〉).

π and π/2 phase shifts respectively, between the incoming extraordinary (e) and ordinary (o)

waves. That is, in the frame of reference of the wave plate, HWPs and QWPs perform the

following unitaries,

UHWP = Rz(π) =

[
−i 0

0 i

]

UQWP = Rz(π/2) =
1√
2

[
1−i 0

0 1+i

]
. (2.16)

If both of the optical elements are made of the same material, and therefore have the same

no and ne, the only difference between them is their thickness, which from Eq. 2.7 gives the

variation in phase shift.

We describe the phase shift imparted between the e- and o-waves in the reference frame of

the wave plate itself, however when describing the system in the laboratory reference frame we

use the horizontally and vertically polarised states which are related by a physical rotation in

space R(θ) given by,

R(θ) =

[
cos θ sin θ

− sin θ cos θ

]
, (2.17)

where θ is the physical angle of the optic-axis with respect to the horizontal axis in the labo-

ratory frame of reference [14]. Notice that although this rotation is a physical one it is similar

to the beam splitter rotation Ry(θ) given in Eq. 2.13. We therefore interpret this rotation as
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Figure 2.2: The action of wave plates represented on the qubit sphere. a) A half-wave plate

implements a π/2 rotation about an axis defined in the real plane indicated by the red dashed

line. b) A quarter wave plate does a π/4 rotation. In both cases θ is the physical rotation angle

of the wave plate with respect to the optic axis in the laboratory frame of reference.

a change of reference frame. The operation of a wave plate in the laboratory frame can be

built up as follows i) rotate into the wave plate frame of reference, ii) implement the desired

wave plate unitary and finally iii) rotate back to the laboratory frame of references. For a wave

plate rotated at an angle θ with respect to laboratory frame the HWP and QWP perform the

following unitaries [14],

UHWP (θ) = −i

[
cos 2θ sin 2θ

sin 2θ − cos 2θ

]

UQWP (θ) =
1√
2

[
1 + i cos 2θ i sin 2θ

i sin 2θ 1− i cos 2θ

]
. (2.18)

Examples of their actions on states on the qubit sphere are shown in Fig 2.2. Using a combina-

tion of half-wave and quarter-wave plates allows one to change any state on the qubit sphere to

any other state: they can form a universal single qubit unitary. In fact is has been shown that

a combination of one half-wave plate and two quarter-wave plates in any order, is sufficient to

realise a universal single qubit unitary up to a phase factor [19]. Of course, in practice a wave

plate will not implement the exact rotations shown in Eqs. 2.18. For further discussion on real

wave plates see reference [14].

Dual-rail encoded qubits

In dual rail the qubit state is represented by the photon number occupation in two orthogonal

optical modes. If a photon is in optical mode x we assign it the state |10〉= |1〉x ⊗ |0〉y and

likewise when the photon is in optical mode y, |01〉= |0〉x ⊗ |1〉y. Importantly, x and y can

be any two orthogonal states of the light field, for example polarisation. Polarising beam

splitters spatially separate the incoming optical field into its orthogonal polarisation states

to give an equivalent representation of the qubit in the longitudinal dual-rail representation,

29



2.2. Photonic quantum computing

that is orthogonal qubit states in separate longitudinal-spatial modes. This mapping from the

polarisation states to two orthogonal longitudinal-spatial modes x and y, is given by

|10〉HV → |10〉xy
|01〉HV → |01〉xy . (2.19)

Conventionally these dual-rail states are equivalent to the computational basis states, that is,

|0〉= |10〉 and |1〉= |01〉. The joint state of two qubits in the dual-rail representation lives in a

Hilbert space spanned by the four (unnormalised) basis states |1010〉, |1001〉, |0110〉 and |0101〉,
in the basis |x1y1x2y2〉, where x1 is photon 1 in mode x.

2.2.3 Nonlinear optical quantum gates

As discussed in Section 1.1.6 one of the fundamental building blocks of a universal quantum

computer is an entangling two-qubit quantum gate. The controlled-SIGN (CZ) gate, which

given the correct input states can produce a maximally entangled two-qubit state, is defined as

having the following operation in the computational basis,

UCZ |x〉 |y〉 = (−1)x·y |x〉 |y〉 . (2.20)

In other words, when both x, y=1, meaning that both photons are in the optical mode ‘1’, the

joint state is subject to a π phase shift (since eiπ=− 1).

One way to implement such an interaction is via an optical Kerr nonlinearity in a nonlinear

dielectric material. These materials exhibit a refractive index nr, which is proportional to the

input optical field intensity, such that

nr = n0 + χ′E2, (2.21)

where n0 is the ordinary refractive index and the proportionality constant χ′, is related to the

third-order susceptibility of the material. This change in refractive index induces an intensity-

dependent phase shift by two distinct mechanisms. The first is referred to as a self-phase

modulation in which the intensity of a single beam induces a phase shift upon itself, and the

second is called the cross-Kerr effect and refers to a signal (probe) optical mode inducing

a phase shift upon a separate probe (signal) mode [16]. The cross-Kerr effect produces an

intensity dependent phase shift, between optical modes 1 and 2 by mediating the following

interaction Hamiltonian

HKerr = ~χa†1a1a
†
2a2, (2.22)

where χ is proportional to the third-order susceptibility and (a†1a1) and (a†2a2) are the number

operators for optical modes 1 and 2 respectively [17].

Figure 2.3 shows how this nonlinear optical effect could be used in principle for an entangling

quantum gate between two single photon qubits. The cross-Kerr effect for two single photon
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Figure 2.3: Using Kerr nonlinearities for entangling quantum gates. a) Two single photons,

prepared as dual rail qubits, are subject to the cross-Kerr effect when they are both present in

mode ‘1’. When the phase shift induced by the cross-Kerr effect is equal to π, or equivalently

eiχt=−1 this gate is equivalent to a CZ operation between the two qubits. b) Two 50/50 beam

splitters placed either side of the target qubit transforms the CZ into a CNOT gate.

qubits is described by the following unitary evolution

UKerr |x〉 |y〉 = e−ix·yχt |x〉 |y〉 . (2.23)

Hence, the size of the induced phase shift is directly proportional to both χ and the interaction

time t.

The gate in Fig. 2.3a shows two single photons, one acting as the control qubit and the

other as the target qubit, that are subject to the phase shift induced by the cross-Kerr effect

only if they are both in optical mode ‘1’. This is similar to the phase shift operation required

for the CZ gate given in Eq. 2.20. An entangled state can be produced by preparing both the

control and target qubits in an equal superposition of their respective ‘0’ and ‘1’ modes giving

the following output,

|0〉c |0〉t + |0〉c |1〉t + |1〉c |0〉t + e−iχt |1〉c |1〉t
2

. (2.24)

In the case where eiχt= − 1 this state is a maximally entangled state. Quantum gates based

on Kerr-nonlinearities were first proposed by Yamamoto [20] and Milburn [21]. More recent

studies by Hutchinson and Milburn [22] detail how Kerr-nonlinearities can be exploited for

building up large multipartite entangled states called cluster states, which have been shown to

be a powerful resource in the measurement based scheme of quantum computing [23].

One of the major advantages that this system has over other optical quantum computing

schemes is that it is deterministic. As we will see in the next section the linear optics scheme

for quantum computing relies on quantum logic gates that are inherently non-deterministic.

That is, in order to know whether the logic gate has worked or not one is forced to measure

and therefore destroy the output photons which carry the crucial quantum information. This

problem can be circumvented with the addition of ancilla photons, but more on this later.

Inducing a phase shift of the order of π using a cross-Kerr nonlinearity is difficult due to

the lack of materials that exhibit strong enough third order susceptibilities. Currently the best

reported phase shift induced by a single photon in a nonlinear optical material was measured
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to be of the order of ∼ 10−7 rads [24]. In this work they measure the single photon induced

phase shift in a photonic crystal optical fibre and claim that a fibre length of a few kilometres

with losses of ∼ 1dBkm−1 would still only result in phase shifts of ∼ 10−4 rads. In addition

to the small nonlinearities of known materials the task of producing well defined single Fock

photon states is itself a difficult problem. We will discuss this issue more in Section 2.2.5 and

in much greater detail in Chapter 3.

2.2.4 Linear optics quantum computing

We have discussed how single qubit gates can be implemented using basic linear optics elements

equivalent to phase shifters and beam splitters, but what about multiple qubit gates? In

Section 1.1.6 we discussed how quantum logic gates can in theory be used to create maximally

entangled bipartite states, and in the previous section we showed that creating such states

is currently infeasible using nonlinear optics techniques. We will now discuss the alternative:

linear optics quantum computing.

In 2001 Knill, Laflamme and Milburn (KLM) proposed a scheme for deterministic quantum

computation using only single photon sources and detectors, and linear optical networks [25].

The scheme relies heavily on off-line resources such as ancilla photons and entanglement to

combat the inherent non-deterministic nature of a single linear optics quantum logic gate.

These extra required resources make the task of building a scalable quantum computer with

linear optics a hard one. Despite this the first proof of principle two-qubit quantum logic gate,

the controlled-NOT, was experimentally demonstrated with linear optics in 2003 by O’Brien et

al. [26]. Since then more two-photon gates [27, 28, 29, 30, 31] and the three-photon Toffoli [32]

gate have been realised inside the lab. In a next step towards quantum computation with single

photons, demonstrations of Shor’s algorithm first in free space [33, 34] and more recently with

silica-on-silicon waveguides circuits [35], show promise for this system as a tool in quantum

computation.

As we saw in the previous section, implementing a CZ gate with single photons requires

that the presence of one photon affects the state of another in a nonlinear fashion. In nonlinear

optics this interaction could be mediated deterministically through the use of the cross-Kerr

effect. The breakthrough in the linear optics KLM scheme is that a nonlinearity can arise by

means of measurement [25]. Central to the understanding of the KLM scheme is the way in

which photons themselves interact via linear optics, which is the subject of the next section.

Photon-photon interaction

On a qualitative level single photons interact with the universe in much the same way that

classical fields do, they are subject to absorption and scattering with matter and interference

with themselves. Where they differ significantly from classical fields is their interaction with

other single photons, exemplified by the interference of two single photons at a beam splitter,

see Fig. 2.4.
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Consider two single photon qubits |ψ1〉 and |ψ2〉, represented in dual-rail as,

|ψ1〉 = a†1 |00〉 = |10〉

|ψ2〉 = a†2 |00〉 = |01〉 . (2.25)

From Eq. 1.6 the total state of this system is given by the tensor product of the two qubits

|ψT 〉= |ψ1〉 ⊗ |ψ2〉. The action of a beam splitter on the two qubits is given by the tensor

product of the individual beam splitter operations for each mode given in Eq. 2.13, that is

U
(2)
BS = UBS ⊗ UBS

=


tt tr rt rr

−tr tt −rr rt

−rt −rr tt tr

rr −rt −tr tt

 , (2.26)

where r=
√
η and t=

√
1− η are the reflectivity and transmissivity of the beam splitter respec-

tively. Acting on the two-qubit state |ψT 〉 we have,

U
(2)
BS |ψT 〉 =


tt tr rt rr

−tr tt −rr rt

−rt −rr tt tr

rr −rt −tr tt




0

1

0

0



=


tr

tt

−rr
−rt

 . (2.27)

Substituting r=
√
η and t=

√
1− η we have the final output state,√

η(1− η) (|1010〉 − |0101〉) + (1− η) |1001〉 − η |0110〉 . (2.28)

If the photons are entirely indistinguishable, the Bosonic commutation relations ensure that

the states |1001〉 and |0110〉 are symmetric under the exchange of photons 1 and 2. Therefore,

in general we have, √
2η(1− η) (|20〉 − |02〉) + (1− 2η) |11〉 , (2.29)

where |1010〉=a†1a
†
1 |00〉, |0101〉=a†2a

†
2 |00〉 and |1001〉=a†1a

†
2 |00〉. However, in the special case

of a 50/50 beam splitter, where r = t = 1/
√

2, we have the state

a†1a
†
1 |00〉 − a†2a

†
2 |00〉

2
=
|20〉 − |02〉√

2
, (2.30)

The right hand side is the equivalent state represented in the number basis. Therefore, when
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+

Figure 2.4: Schematic representation of a Hong-Ou-Mandel experiment. a) Two photons arrive

at the beam splitter simultaneously and bunch at the output ports. b) Two photons injected

into the 50/50 beam splitter are temporally delayed and therefore distinguishable: no photon

bunching is observed at the output detectors.

two perfectly indistinguishable photons arrive at a 50/50 beam splitter at the same time they

‘bunch’ together and leave via the same optical port. Using single photon detectors at each

output of the beam splitter one can observe how the number of coincident events changes as the

overlap between incoming photons is altered. Due to the bunching effect, when the photons are

maximally overlapped the coincidence rate drops to a minimum. A setup of such an experiment

is illustrated in Fig. 2.4a and an example of real experimental data is shown in Fig. 2.5. The

effect known as non-classical, or Hong-Ou-Mandel (HOM) interference, named after those who

first observed it [36], is a direct consequence of the Bosonic commutation relationship (see

Eq. 2.2), and is one of the key differences between classical and quantum light fields.

Mastering HOM interference is a challenge for experimental physicists and requires careful

optical alignment and photon source engineering [37]. Temporal and spatial mode mismatch,

frequency or polarisation non-degeneracy, and photon number purity all contribute to the dis-

tinguishability of the input photons which will ultimately be seen as a drop in the contrast or

visibility of interference, defined as

V =
Pout − Pin

Pout
(2.31)

where Pout and Pin are the probabilities of detecting a coincident photon pair at the outputs of

the beam splitter inside (maximum overlap, Fig 2.4a) and outside (far from maximum overlap,

Fig 2.4b) the HOM interference dip, respectively.

Hong-Ou-Mandel interference is one key ingredient in performing multi-qubit quantum gates

with linear optics. The other ingredient is measurement. Measurement introduces the non-

linearity required to affect the controlled operations between multiple qubits detailed in Sec-

tion 1.1.6. As it is used multiple times throughout this thesis, we will now detail the operation

of a linear optics CZ gate based on the KLM scheme of linear optics quantum logic gates.
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Figure 2.5: Experimental data showing coincidence counts vs temporal delay between two

photons at a 50/50 beam splitter, the corresponding experimental schematic is shown in Fig. 2.4.

This data was taken using two triggered photons from two independent photon sources (see

Section 2.2.5). The red markers show experimental data with Poissonian errors smaller than the

marker size. The calculated visibility in this case is 81± 2%, demonstrating that the photons

are not entirely indistinguishable.

The linear optics CZ gate

In 2002 a linear optics version of the CNOT and CZ gate was proposed by Ralph et al. [38] and

Hofmann et al. [39] respectively. The mechanism by which they operate are identical, relying on

the non-classical interference of two vertically polarised photon modes at a beam splitter with

a reflectivity of η=1/3. The operation of the gate is best understood in the dual-rail picture,

which is shown schematically in Fig 2.6a.

Importantly, the gate only operates in post-selection, that is, only if one photon is output in

each mode cout and tout does the circuit operate as a CZ gate. Its operation can be understood

as follows. If the control is prepared in the horizontally polarised state occupying mode cH,

no interaction between the control and target can occur such that a coincidence is detected at

both the output ports. However, when the control photon is in the mode cV it can interact

with the vertically polarised mode of the target qubit tV at the central 1/3 beam splitter. This

non-classical interference causes a π phase shift between the control and target qubits when

they leave the gate via different output ports.

As the gate is operated in post-selection, for vertically polarised input photons we disregard

all instances when both photons leave via the same optical port, these account for exactly 8/9

of all events. To balance this loss for the horizontally polarised inputs, two extra 1/3 beam

splitters attenuate the cH and tH modes. The gate therefore has a success probability of 1/9.

In practice this type of gate is difficult to realise using dual-rail encoding. Not only are the
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Figure 2.6: The CZ gate in detail a) dual rail representation using three η=1/3 non-polarising

beam splitters (BS) and b) using an entirely polarisation encoded setup with a single partially

polarising beam splitter (PPBS) with reflectivities ηV = 1/3 and ηH = 1 for horizontal and

vertical polarised light respectively [27, 30, 31]. An additional wave plates doing a Pauli-X

operation, and identical PPBSs at the output balance the loss for the horizontally polarised

modes. In both setups, quantum interference results in a relative π phase shift of the vertical

polarisation components, cV tV . The correct functioning is heralded by a coincidence count

between the two outputs, cout and tout, which occurs with probability 1/9.

optical paths difficult to align, but due to the classical interferometers required between the

control and target modes, physical drift can hamper the overall characterisation of the gate

operation. Despite these issues the first demonstration of this gate using this configuration was

implemented in 2003 by O’Brien et al. [26].

Subsequently a new design of this gate based entirely on polarisation encoding was developed

by Langford [27], Kiesel [30] and Okamoto [31], see Fig. 2.6b. The gate operates in an identical

fashion as its predecessor, except here the entire gate setup is realised using polarisation encoded

photons, not longitudinal spatial-mode, therefore circumventing the need for highly stabilised

classical interferometers. The trick is to use a partially polarising beam splitter (PPBS), one

that has different reflectivities for orthogonal polarisation modes H and V .

Although in linear optics schemes two-photon quantum gates cannot be performed deter-

ministically without the addition of extra ancillary photon resources [25], non-deterministic

gates are useful for demonstrating proof-of-principle photonic quantum logic, generating entan-

gled states and performing non-destructive measurements. All such experiments can employ

the use of the linear optics CZ gate, which we use experimentally in Chapters 3 and 4.

All of the theoretical proposals for scalable photonic quantum computing assume the avail-

ability of single photon Fock states, whereas state-of-the-art demonstrations in this field use

spontaneous parametric downconversion (SPDC) as the photon source which only approximates

a true single photon states [40]. Finally, for the remainder of this chapter we will discuss this

method for the creation of single photon states.
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2.2.5 An approximate single photon source:

Spontaneous parametric downconversion

Every experiment in this thesis makes use of pairs of single photons produced via spontaneous

parametric downconversion (SPDC). First observed in the 1970s [11], SPDC has proved an

invaluable tool in fundamental science, from Bell tests [41] to quantum computing [26, 27, 28,

29, 32, 33], as well as in more practical applications such as quantum key distribution [42] and

quantum metrology [43]. The advantages of SPDC sources are numerous: they are easy to

set up, can be operated at room temperature and with sturdy optical alignment can provide a

steady flow of single photons for days.

SPDC is a process whereby one high energy pump photon decays into two lower energy

daughter photons—traditionally called signal and idler—obeying both energy and momentum

conservation. The process occurs in a nonlinear optical medium, one whose polarisation P has

a nonlinear dependence on the input electric field amplitude,

P = χ(1)E + χ(2)E2 + χ(3)E3..., (2.32)

where χ(i) us the ith-order susceptibility of the optical medium and we have only considered

the electric field contribution of the polarisability [44]. When the electric field in the above

equation is sinusoidal in time a polarisation wave is established in the medium which has a

non-zero coupling between the fundamental frequency of the input field with its subharmonics

(and visa-versa in the case of second harmonic generation) [45]. In the case of SPDC there is

a χ(2) nonlinearity that gives rise to a three-wave mixing process between the pump field, ωp

and the two down-converted fields, ωs and ωi, called the signal and idler respectively, where

ωp = ωs + ωi.

Phase matching and the geometry of SPDC

In addition to conservation of energy expressed as, ωp = ωs + ωi, the three fields involved in

SPDC should conserve momentum, that is, their wave vectors should satisfy

~kp = ~ks + ~ki. (2.33)

Importantly, for a maximum energy transfer between the pump field and the down-converted

fields, the polarisation wave that is set up by the pump beam in the nonlinear medium must be

phase coherent with the resulting down converted fields [44]. Since the wave vectors involved

are determined by the refractive indices of the material the following relation must hold for

efficient energy transfer [46]

npωp = nsωs + niωi. (2.34)

With these conditions the system is said to be phase matched [44]. Neglecting factors such as

anomalous dispersion and birefringence for now, in the case of normally dispersive materials,

that is dn
dω
> 0, the conditions in Eq. 2.34 are impossible to meet. To show this we examine the
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Positive uniaxial Negative uniaxial
(ne > no) (ne < no)

Type-I nopωp = neiωi + nesωs nepωp = noiωi + nosωs
Type-II nopωp = noiωi + nesωs nopωp = neiωi + nosωs

Table 2.1: Phase matching conditions for type-I and type-II χ(2) processes in a nonlinear

medium with uniaxial birefringence.

refractive index differences np − ns and np − ni, which are given by,

np − ns =
(ni − ns)ωi

ωp
(2.35)

np − ni =
(ns − ni)ωs

ωp
. (2.36)

Since for normally dispersive materials the left-hand-sides of these equations are always positive,

both of them cannot be simultaneously satisfied for any choice of ωs and ωi [44]. The phase

matching condition in Eq. 2.34 can be satisfied however, by making use of the birefringence of

a nonlinear material, that is, the difference in refractive index dependent upon the polarisation

of the various optical fields.

There are many different phase matching conditions that can be achieved in birefringent

materials, depending upon the pump polarisation and the type of birefringence in the nonlinear

medium. An in-depth discussion of all of them is beyond the scope of this thesis, for a more

comprehensive overview see references [44, 47, 46]. The simplest case of phase matching in a

χ(2) media is understood in uniaxial birefringent materials. Table 2.1 lists the types of phase

matching that are possible in these systems [44, 47]. Most of the experiments in this thesis

employ Type-I phase matching in β-barium borate (BBO) which has a strong negative uniaxial

birefringence, ne < no. Here, the phase matching conditions are met when the pump pho-

ton is extraordinarily (ordinarily) polarised and converts into two ordinarily (extraordinarily)

polarised daughter photons.

Having the correct material is only the first step in achieving optimal conditions for down-

conversion. To accomplish phase matching one must control the refractive indices for the

individual fields either by angular or temperature tuning the nonlinear medium.

Angular tuning is the process of precisely controlling the alignment of the crystal optic axis

with respect to the propagation direction of the pump field. Due to birefringence this will

often result in an angular emission of the down-converted fields, and given the symmetry about

the pump axis, the pair ωs and ωi is emitted as a cone out of the crystal. Figure 2.7 shows

a typical experimental setup to couple down-converted light into optical fibers. Additionally,

since some materials’ refractive indices exhibit strong temperature dependences, for example

lithium niobate, temperature can also be used to establish perfect phase matching.

Since the pump beam will inevitably contain a spectrum of wavelengths so will the down-

converted photons and therefore they will share frequency correlations. Usually strong spectral

filtering is applied to increase indistinguishability in this degree of freedom, although this has
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Figure 2.7: Experimental setup to couple light from a spontaneous parametric downconversion

source into optical fibers. In most cases light is emitted out of the nonlinear crystal as a cone

of light made up of degenerate single photon pairs at opposite sides of the cone. Prism mirrors

direct light from the cone through lenses and into the fiber core. a) Top view. b) Oblique view.

the adverse effect introducing extra loss and decreasing overall photon collection efficiency.

One way around this is to tailor the phase matching conditions appropriately such that the

down-converted fields are spectrally separable, allowing the triggering of one photon in the pair

without collapsing the other it into a spectrally mixed state. Such a system was developed and

implemented in a Type-II bulk crystal source by Mosley et al. [48].

Group velocity mismatch in SPDC

In any birefringent material ordinary and extraordinary fields will experience different group-

velocities if propagating neither exactly parallel nor perpendicular to the optic axis of the

crystal [37]. For Type-I processes the signal and idler are identically polarised so they do not

experience differing transverse walk-off. However, since the pump is orthogonally polarised

to the signal/idler, it travels through the crystal with a different group-velocity compared

to the down-converted light, introducing longitudinal walk-off. In the worst case two down-

converted photons from independent sources, one produced at the beginning and one at the

end of the crystal, will suffer a temporal delay that introduces distinguishability between the

two down converted fields, see Fig. 2.8. Group-velocity mismatch, as it is known, is one source

of distinguishability between photons from independent sources. In the context of this work it

reduces the visibility of Hong-Ou-Mandel interference and therefore the quality of a quantum

logic gate [37].
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Figure 2.8: Group-velocity mismatch is one factor that effects the quality of non-classical

interference between independent photons from separate downconversion sources. a) In the

left-hand source, a pair of photons is produced at the beginning of the nonlinear crystal whereas

in the right-hand source the pair is produced at the end of the nonlinear crystal. Because the

pump and downconversion fields travel through the crystal with different group velocities a

temporal mode mismatch is introduced between the interfering photons at the beam-splitter.

As a result the visibility of Hong-Ou-Mandel interference is reduced, see Eq. 2.31 b) Using a

shorter crystal reduces the effect of group velocity mismatch at the expense of source brightness.
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Pulsed SPDC and higher order terms

Pulsed SPDC uses ultrashort (fs) pulses of light energy at high repetition rates (MHz) as the

pump beam, ωp, which offers two advantages over continuous wave SPDC:

1. Short pulses that are temporally separated provide a natural time bin for degenerate

downconversion events2.

2. High peak power increases the probability of simultaneous photon creation greater than

two.

Although point 2 is desirable for multi-photon experiments from independent processes

it also acts to introduce noise into the photon source. In the pulsed regime, used to perform

experiments with photon numbers > 2, the likelihood of higher order photon events is increased

due to the high peak power of each pulse. Without the ability to resolve the number of photons

in a linear optics network3, higher order photon events lead to spurious counting statistics. In

the next chapter we describe a temporal multiplexing scheme that reduces the rate of higher

order photon events without compromising the single-photon brightness.

2Provided the detectors are fast enough to resolve each pulse in one time window
3Standard single photon detectors simply click for an incident number of photons ≥ 1.
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down-conversion by temporal multiplexing
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Abstract

We present a simple technique to reduce the emission rate of higher-order photon events from

pulsed spontaneous parametric down-conversion. The technique uses extra-cavity control over

a mode locked ultrafast laser to simultaneously increase repetition rate and reduce the energy

of each pulse from the pump beam. We apply our scheme to a photonic quantum gate, showing

improvements in the non-classical interference visibility for 2-photon and 4-photon experiments,

and in the quantum-gate fidelity and entangled state production in the 2-photon case.
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3.1 Introduction

T
rue single-photon sources are an essential requirement for scalable applications of quantum

information processing. Ideally such sources should deterministically provide a Fourier

limited wave-packet, having one and only one photon in a well defined spatio-temporal mode,

and desirably with a high brightness [1]. Additionally, and in particular for the scalability of

linear optics quantum computing [2], multiple devices should produce identical spectral emission

to enable heralded and indistinguishable single-photons. Unfortunately, it is challenging to

engineer single-photon emitters meeting all of these requirements. Solid state solutions, such

as quantum dots [3, 4] despite demonstrating both triggered single-photon emission [5] and

high collection efficiencies [6], have yet to achieve equivalent spectral properties across multiple

sources. Systems based on color centers in diamond [7, 8], can suffer from low collection

efficiencies due to isotropic emission and other candidates like atoms [9, 10] and molecules [11,

12] have similar issues with low output coupling and as of yet have not demonstrated high

brightness.

One approach to produce single-photons is to employ pair sources, where conditional de-

tection of one of a pair of photons is used to herald single-photon events. The current

state-of-the art for heralded single-photon sources is spontaneous parametric down-conversion

(SPDC) [13, 14, 15, 16]. Here a pump laser is used to create a pair of photons in a nonlinear

birefringent material. However, creating single-photons in a pure state requires careful engi-

neering of the properties of a down-conversion source. First, photon pairs from down-conversion

are naturally entangled in energy and momentum, demanding special techniques to tailor their

joint correlations and avoid heralding single-photons into mixed states [17, 18, 19, 20]. Second,

since the process is spontaneous, there is a probability of emitting more than a single photon

into the same spatio-temporal mode [21]. This effect is intensified when strong pump pulses are

used to drive the down-conversion. These multi-photon, or higher-order, emissions have detri-

mental effects in applications such as quantum cryptography, where they can compromise the

security of quantum key distribution [22]; and in linear optical quantum computing, where the

noise resulting from these higher-order events significantly increases the error rates in quantum

circuits [23, 24].

There are several techniques which can minimise multi-photon SPDC emissions. The sim-

plest is to run an experiment at lower pump power, if one can afford the resulting decrease

in source brightness. If this is not an option, several sources at lower power can be multi-

plexed. In the spatial multiplexing scheme suggested in [25], several down-converters are run

in parallel as a photon switchyard. Whenever one source produces a trigger photon, the signal

photon is switched into one common output mode. The efficiency for this scheme has been

simulated in detail in [26] and demonstrated on a small scale in [27]. Alternatively, sources can

be multiplexed in time.

In this letter, we implement a passive temporal multiplexing scheme. We show that increas-

ing the repetition rate of the pump laser while simultaneously lowering the energy of each pump
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Figure 3.1: Experimental scheme. a) Doubling the pump laser repetition rate. A Coherent

MIRA 900 HP mode-locked Ti:Sapphire laser outputs approximately 3.8 W of 820 nm pulses

with a repetition rate of 76 MHz and a pulse length of approximately 100 fs. This light

is frequency doubled via second harmonic generation in a non-linear bismuth borate (BiBO)

crystal giving 1.53 W centred at 410 nm. An optical delay loop, consisting of two beamsplitters

and two high-precision mirrors, splits off half of the laser light and feeds it back to the pump

mode with a 6.6 ns delay which is equal to half the initial separation between two pulses

(approximately 2 m). Photon pairs are created via spontaneous parametric downconversion in

a type-I phase-matched β-barium-borate crystal (BBO), pumped bidirectionally. The photons

are sent through interference filters centred at 820 nm with a full-width at half-maximum

(FWHM) bandwidth of 2.5 nm before being coupled into single mode optical fibers. Photon

were counted using standard avalanche photo-diodes. The output of each detector is fed into

a commercially available counting logic with a coincident time window of 3 ns. The 152 MHz

source was pumped with a maximum power of 1.53 W, with approximately 50% of this power

available in the 76 MHz regime. The two photon coincidence brightness were 38.4 counts/s/mW

and 40.3 counts/s/mW for the 152 MHz and 76 MHz sources respectively. b) The repetition

rate is increased by introducing additional 50:50 beam splitters for delay loops, where each

delay decreases in length by a half with respect to the previous one. This scheme can increases

the repetition rate R beyond a factor of two with no further overall loss in pump power.

pulse decreases the emission of multi-photon events. Our technique allows an improvement of

signal-to-noise ratio for heralded single-photon sources from pulsed down-conversion, without

compromising the brightness of single-photon emission. Compared to previous multiplexing

approaches, our scheme relies on a simple optical arrangement to perform extra-cavity control

over the pump power and repetition rate. As a quality benchmark, we demonstrate the im-

provement in the non-classical interference visibility between photons emitted by a single or by

independent down-conversion sources, as well as the overall quality of a photonic entangling

quantum gate.
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3.2 Pump repetition rate and higher-order terms

We start by showing the effects of increasing the pulse repetition rate of the pump on multi-

photon emission in a single down-conversion source. The interaction of the pump beam with

the nonlinear medium during each pulse is described by the Hamiltonian [28]

H = iξ~
(
a†1 b

†
1 + h.c.

)
, (3.1)

where a†1 and b†1 are the photon creation operators into signal and idler modes a1 and b1 re-

spectively; and ξ is the overall efficiency parameter, which represents the non-linear interaction

strength and carries information about spectral properties of the pump laser. Furthermore, ξ

is linearly proportional to the electric field amplitude of each pump pulse. The output state of

the down-conversion process can be written as [29]

|ΨSPDC〉 =

√
1− |λ|2

∞∑
n=0

λn |n, n〉a1,b1
, (3.2)

with λ=ξτ , where τ is the interaction time inside the down-conversion medium. From Eq. 3.2

we see that the probability of creating n photon pairs per pulse is given by

P (n) = (1− |λ|2) |λ|2n . (3.3)

Thus the joint photodetection rate per second for modes a1 and b1 using so-called bucket

detectors, i.e. photodetectors without photon-number resolution is

Ccoinc = R
∞∑
n=1

(1− (1− η)n)2P (n), (3.4)

where R is the repetition rate of the laser and η is the product of the detector efficiency and the

optical efficiency to include optical losses and optical coupling [29]. As pump power per pulse

is increased in an effort to increase single-photon brightness multi-photon terms increase more

rapidly leading to lower signal-to-noise ratios. From Eqs. 3.3 and 3.4 the signal-to-noise ratio

can be approximated by the single pair (n=1) emission over the double pair (n=2) emission,

SNR ≈ η2

(1− (1− η)2)2 |λ|2
. (3.5)

If we now halve the power of each pump pulse, such that ξ → ξ/
√

2, while simultaneously

doubling the repetition rate, R→ 2R, the joint photodetection rate becomes

Ccoinc = 2R
∞∑
n=1

(1− (1− η)n)2P (n)

2n
. (3.6)

Note that the rate of generating just one pair of photons per second is not affected, while events
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n ≥ 2 are reduced by a factor of 2n−1. In fact, an equivalent argument can be made for an

arbitrary multiple increase in repetition rate, m, such that the generic formula for this scheme

becomes,

Ccoinc(m) = R

∞∑
n=1

(1− (1− η)n)2P (n)

m(n−1)
, (3.7)

and the signal to noise ratio becomes

SNR ≈ mη2

(1− (1− η)2)2 |λ|2
. (3.8)

Perhaps more importantly, the same is true for independent sources where two passes through

the same down-conversion crystal (or equivalently two separate crystals) are used to produce

independent photon pairs, see Fig. 3.1a. Since the mathematical argument is equivalent to

above we omit it here and direct the interested reader to the appendix.

3.3 Experimental details

Since most commercial laser systems do not offer the feature of a tunable repetition rate, we

developed a simple extra-cavity arrangement to do this, see Fig. 3.1. We used this scheme to

double the repetition rate of the second harmonic light produced by frequency doubling the

820 nm line of a 76 MHz Ti:Sapphire laser (Coherent Mira 900 HP). Using two 50:50 beam

splitters placed in series we introduce a delay of 6.6 ns, approximately half the time lapse

between two original laser pulses, in one arm of the pulse doubler circuit while simultaneously

lowering the peak pulse power. High precision mirror mounts are used to steer light into the

down-conversion crystal to ensure the same phase matching conditions from both arms of the

pulse doubling circuit. Note that the doubler has to be installed after the second-harmonic

stage, because of the non-linear dependence of the second-harmonic process on pump power.

Note furthermore, that the delay loop does not require active phase stabilisation, and that the

temporal delay does not have to not be an exact multiple of the master laser, provided the

pulses are separated by at least the timing jitter of the detectors.

Our scheme reduces the total available pump power by a factor of 2 due to the probabilistic

recombination of the delayed and the original pump mode. This tradeoff is acceptable since

multi-photon experiments relying on SPDC in bulk crystals already have to operate at reduced

power to minimise noise. Modern SPDC sources based on periodically poled crystals only

require a few hundred microwatt of pump power [30] and would benefit from even higher

repetition rates. Figure 3.1b shows how our scheme can be extended to repetition rates of 4, 8

etc. without additional optical loss except that introduced by the beamsplitters.

To demonstrate the effectiveness of this scheme we measured the rate at which higher-

order events from SPDC occur as a function of pump power. Figure 3.2 shows the ratio,

P (n=2)/P (n=1) between 4-photon and 2-photon events, as a function of the SPDC pump power

for pumps at 76 MHz and 152 MHz. These results were obtained using spatially multiplexed
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Figure 3.2: Ratio of 4-photon to 2-photon events for varying photon source pump power with

pump repetition rates of 76 MHz (red triangles) and 152 MHz (black circles). The red solid

and black dashed lines show the theoretical predictions. Since the pump beam at 76 MHz is

only one arm of the pulse doubling circuit, the maximum power available is equal to 50% of

the total power at 152 MHz. Errors due to Poissonian counting statistics are not visible on this

scale.

single-photon avalanche diodes in order to count the number of photons in each down-conversion

mode. The results show that in both pump regimes the ratio of 4-photon to 2-photon events

varies linearly with pump pulse power as predicted by Eq. 3.6. However, there is a clear

difference between the inclination of the two curves due to a decrease in the power available

per pump pulse for the pump beam at 152 MHz compared to that at 76 MHz. The calculated

slopes of both curves have a ratio of 2.12± 0.07, which is consistent with the fact that emission

of single-photons per down-conversion mode is not altered in this scheme.

3.4 Application in linear optics quantum computing

It is interesting to test this scheme in the practical application of optical quantum information

processing. As previously discussed in Refs. [23, 24] higher-order events from SPDC are the

major factor in degrading the quality of entangled states produced by linear optical quantum

gates: non-single photon inputs have a larger impact over the total error-per-gate operation

than, for example, errors due to spatial-mode mismatch.

We built a photonic controlled-phase (CZ) gate to test the effectiveness of the pulse-doubling

scheme, see Fig 3.3c. The circuit implementation is based on Hong-Ou-Mandel interference of

the two optical input modes at a partially polarising beam-splitter (PPBS)—a detailed descrip-

tion of the gate can be found at [31], or Section 2.2.4 of this thesis. Ideally the PPBS will have
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Figure 3.3: Schematic of the experimental setup. a) Input photons at modes a1 and b1 produced

in a single down-conversion crystal; b) two independent photons are heralded at modes a1 and

a2 by coincident detection of photons b1 and b2. c) A controlled-phase gate implemented by

Hong-Ou-Mandel interference of the input modes at a partial polarised beam splitter (PPBS)

using two different photon sources. Input photons are launched from single-mode optical fibres

into the quantum gate, where one input arm is used to control the temporal delay, ∆t, between

the two interfering optical modes. The state preparation and tomography is implemented

using quarter- (QWP) and half-wave plates (HWP) and polarising beam-splitters (PBS). The

two input optical modes are superposed at a single partially polarizing beam splitter (PPBS)

with nominal reflectivities of ηH=0 for horizontally, and ηV =2/3 for vertically polarized light

respectively. Photons are detected using standard avalanche photo-diodes (APD).

reflectivities of ηH=0 and ηV =2/3 for horizontally and vertically polarised light respectively.

Each input photon encodes a polarization qubit in the horizontal and vertical (|H〉,|V 〉) basis.

Successful operation of the gate is post-selected by the detection of at least one photon in

each output mode, which occurs non-deterministically with a probability of 1/9. Conditioned

on post-selection the gate acts to induce a non-linear phase shift when both input states are

vertically polarized i.e. |V V 〉 → −|V V 〉. Furthermore, the gate is entangling and produces the

maximally entangled state |HD〉+ |V A〉 for an input |DD〉.
We used three measurements to assess the effectiveness of our scheme in a photonic quantum

gate: i) the quality non-classical interference, ii) the fidelity of bipartite quantum states and

iii) an entanglement measure between two qubits.

When two indistinguishable photons are superposed at a beam splitter they will bunch, that

is, preferably exit the beamsplitter via the same optical output mode. Experimentally, as the

relative path difference between input photons, ∆t, is reduced (and hence their temporal indis-

tinguishability is reduced) the bunching effect is seen as a drop in coincident photon detection

at the two output modes. This is known as Hong-Ou-Mandel (HOM) [32] interference and its

quality is measured by the visibility, V=(Cdist − Cindist)/Cdist, where Cdist and Cindist are the

coincidence counts at the output of the beam splitter for distinguishable and indistinguishable

photon inputs respectively. Non-single photon inputs increase the likelihood of photons being

detected in both output modes leading to spurious coincidence events. Therefore the quality

of HOM interference degrades as the ratio of multi-photon events to single-photon events from
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3.4. Application in linear optics quantum computing

SPDC increases, see Eq. 3.5. In particular, the visibility of HOM interference is a direct mea-

sure of photon-number purity once spatio-temporal mode mismatch is accounted for [33], it

therefore serves as a benchmark for the quality of any linear optics quantum gate.
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Figure 3.4: Experimental data for Hong-Ou-Mandel visibilities, for varying photon source pump

power, in a photonic controlled-phase gate. The two photon input state |V V 〉 is interfered at

a PPBS by reducing the relative path difference between the input photons. a) Interference

visibilities for dependent photon inputs and b) visibilities for independent photon inputs for

varying pump powers. Red triangles show results using a pump laser with a repetition rate of

76 MHz and black circles with a repetition rate of 152 MHz. The red solid and black dashed

lines show the theoretical predictions and the errors are calculated using Poissonian counting

statistics.

In the case of a controlled-phase gate a visibility of 80% would be observed for a perfect

single-photon source and an ideal PPBS with reflectivity ηV =2/3. Fig. 3.4 shows how our

doubling scheme reduces the detrimental effect on the visibility of non-classical interference

while increasing the pump power. We show this effect for two scenarios: i) for input photons

produced by a single down-conversion crystal shown in Fig. 3.3a and ii) photons produced by

two down-conversion sources (independent photon inputs) shown in Fig. 3.3b. In the latter

scenario the signal photon from each pass of the crystal is heralded with the detection of the

corresponding idler photon. The experimental data is compared to a numeric model created

with the Matlab quantum optics toolbox by Sze M. Tan [34] and associated linear optical

quantum computing tools written by T. Jennewein, see [26]. This model generates photon

number states for a source derived from the Hamiltonian in Eq. 3.1. It propagates the SPDC

state through a series of optical components as described in [26] and detects them with counting

devices that act like bucket detectors, i.e. they click for photon events n ≥ 1. The theoretical

plots in all figures were based on this Matlab model, assuming imperfect non-number resolving

detectors with a nominal efficiency of 60% and a measured PPBS reflectivity of ηv=0.682±0.002.

Lastly we examine the effects of our pulse doubling scheme on the quality of entangled states

generated by a quantum gate. Although the data presented here was taken with the dependent
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3.4. Application in linear optics quantum computing

photon source an equivalent result would be found for the independent case. We characterized

the entangled state generated by the CZ gate using quantum state tomography for dependent

photon inputs produced by a single down-conversion crystal [35]. We prepare the initial input

state, |DD〉 and make projective measurements on each output photon with the over complete

set {|H〉 , |V 〉 , |D〉 , |A〉 , |R〉 , |L〉}, where |D〉=(|H〉+ |V 〉)/
√

2, |A〉=(|H〉− |V 〉)/
√

2, |R〉 =

(|H〉+i |V 〉 /
√

2, and |L〉=(|H〉−i |V 〉 /
√

2 giving a total of 36 measurements. The input state

|DD〉 gives the maximally entangled output state |HD〉+ |V A〉 and, as such, is most affected

by higher-order photon emissions as shown in [23, 24]. The measured density matrix, ρ, is

reconstructed using a maximum likelihood algorithm and compared to the ideal state, ρideal.

We chose the measures of state fidelity, given by,

F ≡ Tr2(
√
ρ1/2ρidealρ1/2), (3.9)

and tangle (concurrence squared) as a test for entangled state quality. Figure. 4.3a shows the

results. We observe a stark reduction in the rate of state degradation, whilst increasing source

pump power, as we switch from a 76 MHz to 152 MHz pump repetition rate. The results show

the effect for a dependent downconversion source where the goal is to reduce the number of

n ≥ 2 events per down-conversion mode.
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Figure 3.5: Photonic CZ gate performance for varying source pump powers and repetition

rates. a) Photons from a dependent SPDC source are prepared in the initial state |DD〉. The

state quality degrades as source pump power, and hence the relative number of higher-order

terms, increases. This effect is suppressed by doubling the repetition rate of the source pump

laser. Data was obtained with a pump laser at 76 MHz (triangles) and 152 MHz (circles). The

dashed and solid lines show theoretical predictions. b) Similarly the process of the entangling

operation performed by the gate degrades with source pump power. Red triangles show results

using a pump laser with a repetition rate of 76 MHz and black circles with a repetition rate

of 152 MHz, the red solid and black dashed lines show the theoretical predictions. Errors are

calculated using Poissonian counting statistics.
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We also characterised the overall gate performance via quantum process tomography as

detailed in Ref. [35]. The process fidelity is calculated by comparing the resulting process matrix

obtained from experiment, X, to that of an ideal process for a CZ gate, Xideal. Figure 4.3b

shows the effect of increasing laser power on process fidelity, defined equivalently to Eq. 3.9.

Finally, we simulated Hong-Ou-Mandel interference inside a controlled-phase gate between

photons from two independent sources. Figure 3.6a shows the effect on non-classical interference

visibility as a function of both photodetection efficiency and repetition rate of the pump laser.

Notably, we see that increasing the repetition rate by a factor of 10 dramatically increases

the interference quality. We also show separately the variation of the non-classical interference

visibility as function of detection efficiency, shown in Fig. 3.6b, and pump repetition rate, shown

in Fig. 3.6c. While the interference visibility can also be increased by employing highly efficient

photodetectors, this technique is less effective and doing so is considered technologically more

difficult.

We note that the maximum possible repetition rate used to drive a SPDC source is limited

to R = 1/∆t, where ∆t is the coincidence time window which, in turn, is dominated by the

combined electronic jitter of single photodetectors and the coincidence counting logic. Com-

mercial silicon avalanche photon diodes exhibit a timing jitter of typically 400 ps, which can be

matched by commercial counting electronics based on field-programmable gate arrays (FPGA).

An experiment using these detectors can thus in principle resolve between two down-conversion

events created by laser pulses at a maximum repetition rate of 1 GHz, which can be reached

with the extra-cavity control detailed in this paper. This is well worth considering for SPDC

experiments relying on the widely used 76 MHz laser we used for our work. However, it should

be pointed out that femtosecond Ti:sapphire lasers with 500 MHz and even 1 GHz repetition

rate are now commercially available [36] and are probably a more reasonable approach for a

newly designed experiment which does not require abundant pump power.

3.5 Discussion

In conclusion, we have demonstrated a simple temporal multiplexing scheme that reduces the

number of higher-order photon events from heralded single-photon sources based on SPDC.

Our technique improves the signal-to-noise ratio as a result of reducing multi-photon events,

without compromising the brightness and quality of the desired single-photon states. We also

demonstrated an improvement in the performance of a linear photonic quantum gate using our

source. Our technique could be integrated with spatially multiplexed down-conversion schemes

where multiple crystals and optical switches are used to herald single photons into purer Fock-

states [27]. In such a scheme one could reduce the number of spatially multiplexed down-

conversion crystals to achieve a desired signal-to-noise ratio. Future improvements in single-

photon technologies such as linear optics quantum computing and quantum communications

will require a combination of improvements in sources and detection, in particular efficient

number resolving photon detection. In practice, although number resolving detectors reduce
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Figure 3.6: a) Theoretical simulation of non-classical interference visibility in a controlled-

phase gate from two independent photon sources. The visibility of interference is shown by

the color scale and depends on both the detector efficiency and repetition rate of the laser.

The simulation assumes an input state of |V V 〉 from independent photon sources pumped with

100 % of the available pump power and detected with non-number resolving photodetectors.

The free parameter in this plot is the optical loss which, fitted to the experimental data, is

40%. b) and c) show cross-sections of the simulated data, shown in a), for varying detector

efficiency and varying pulse repetition rate respectively. The black marker in these plots shows

the experimental data point taken from Fig.3.4b

the chance of spurious counting statistics, because of optical loss, they do not remove the need

to suppress the number of higher-order terms from SPDC.
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3.6 Appendix

The Hamiltonian that describes the creation of photons for both forward and backward emission

from a type-I down-conversion source, see Fig. 3.1a, can be written as [28],

H = iξ1~a†1 b
†
1 + iξ2~a†2 b

†
2 + h.c., (3.10)

where the ξ1 and ξ2 represent the overall efficiencies and non-linear interaction strengths for the

forward and backward emissions, respectively, they are also linearly proportional to the electric

field amplitude of each pulse; a†j, b
†
j, with j = {1, 2} are the creation operators of the forward

and backward down-conversion modes. From the above equation we obtain the following state,

|ΨSPDC〉 =

√
(1− |λ1|2)(1− |λ2|2)

∞∑
n1=0

λn1
1 |n1, n1〉a1,b1

∞∑
n2=0

λn2
2 |n2, n2〉a2,b2

, (3.11)

with λ1 = ξ1τ and λ2 = ξ2τ . Therefore, the probability of creating n1 and n2 photons from

crystal passes 1 and 2 per pulse is given by

P (n1, n2) = (1− |λ1|2)(1− |λ2|2)
∣∣λ2n1

1

∣∣ ∣∣λ2n2
2

∣∣ . (3.12)

For independent sources the presence of photons in modes a1 and a2 are heralded upon a

detection event in modes b1 and b2 respectively. Again, using non-number resolving detectors

with detection efficiency η, the rate per second of jointly heralding photons in modes a1 and a2

is given by

Ccoinc = R
∞∑

n1=1

∞∑
n2=1

(1− (1− η)n1)2(1− (1− η)n2)2P (n1, n2). (3.13)

Similarly to the previous argument for dependent photons, halving the power per pulse while

simultaneously doubling the repetition rate gives

Ccoinc = 2R
∞∑

n1=1

∞∑
n2=1

(1− (1− η)n1)2(1− (1− η)n2)2

2n1+n2
P (n1, n2). (3.14)
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[21] Weinfurter, H. & Żukowski, M. Four-photon entanglement from down-conversion. Phys.

Rev. A 64, 010102 (2001).

[22] Brassard, G., Lütkenhaus, N., Mor, T. & Sanders, B. C. Limitations on practical quantum

cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000).

[23] Weinhold, T. J. et al. Understanding photonic quantum-logic gates: The road to fault

tolerance. arXiv:0808.0794v1 (2008).

[24] Barbieri, M. et al. Parametric downconversion and optical quantum gates: two’s company,

four’s a crowd. Journal of Modern Optics 56, 209–214 (2009).

[25] Migdall, A. L., Branning, D. & Castelletto, S. Tailoring single-photon and multiphoton

probabilities of a single-photon on-demand source. Phys. Rev. A 66, 053805 (2002).

[26] Jennewein, T., Barbieri, M. & White, A. G. Single-photon device requirements for operat-

ing linear optics quantum computing outside the post-selection basis. Journal of Modern

Optics 58, 276–287 (2011).

[27] Ma, X.-s., Zotter, S., Kofler, J., Jennewein, T. & Zeilinger, A. Experimental generation of

single photons via active multiplexing. Phys. Rev. A 83, 043814 (2011).

[28] Ou, Z.-Y. J. Multi-Photon Quantum Interference (Springer, 2010), 1st edn.

[29] Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys.

79, 135–174 (2007).

59



[30] Evans, P. G., Bennink, R. S., Grice, W. P., Humble, T. S. & Schaake, J. Bright source of

spectrally uncorrelated polarization-entangled photons with nearly single-mode emission.

Phys. Rev. Lett. 105, 253601 (2010).

[31] Langford, N. K. et al. Demonstration of a simple entangling optical gate and its use in

Bell-state analysis. Phys. Rev. Lett. 95, 210504 (2005).

[32] Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between

two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).
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Abstract

Measurement probabilities and correlations between distant particles in quantum mechanics

cannot be reproduced by means of local realistic theories. This result is established by tests

such as Bell’s inequality and Hardy’s paradox. Here we experimentally demonstrate these

concepts in the time domain. We measured a much stronger form of Hardy’s paradox and

demonstrate violation of a Bell inequality in time, independent of the quantum state, including

for fully mixed states.
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4.1 Introduction

Q
uantum mechanics depicts a world with fuzzier contours than our intuitive mind would

suggest. In our common experience, we would naively picture a measurement as a way of

revealing some objective property of an object. This view is disproved by several counterexam-

ples, of which the most common is provided by an entangled system: the correlations between

measurement outcomes can not be explained by a theory assuming that each subsystem has

values determined independently from of measurement itself. Well-proven tests such as Hardy’s

paradox [1] and Bell’s inequality [2, 3] capture these features of spatial entanglement.

This inconsistency can be expressed in a different setting; as pointed out by Legget and

Garg in their seminal paper [4], one can consider correlations between measurements on the

same object occurring at different times. Their aim was to find a particular instance where a

realistic view was untenable, which has subsequently been the subject of numerous theoretical

[5, 6, 7, 8] investigations and experimental demonstrations [9, 10, 11]. In a more general context,

temporal quantum phenomena, in particular “entanglement in time”, have subsequently been

studied in [12, 13, 14].

Here, we report the first experimental implementation of temporal quantum phenomena

beyond the Leggett-Garg inequality: that Hardy’s paradox is much stronger in time [14], and

that a temporal Bell inequality can be state-independent—it can be violated by all quantum

states, even fully mixed ones [12]. Our experiment highlights surprising aspects of quantum

foundations—such as all quantum states are entangled in time. For quantum technology, en-

tanglement in time constitutes a, so far, virtually untapped new resource—it might lead to

more efficient protocols in quantum information, communication and control [12].

Consider a quantum system located at two points in spacetime, A and B, where a quantum

particle exists at each point. A classical model of such a system is based on two assumptions:

(i) realism, that the particle at each point has definite properties prior to, and independent of

measurements; and (ii) non-disturbance, that results of measurements at A are not influenced

by measurements at B, and vice-versa. In the spatial case, Fig. 4.1a, there are separate particles

at A and B, and special relativity ensures that disturbances cannot propagate between them

faster than the speed of light. Thus tenet (ii)—now termed locality—can be enforced by a

space-like separation. In the temporal case, Fig. 4.1b, there is a single particle at different

times, tA and tB, and no known physical principle exists to enforce locality. However, it can be

substituted by the ad hoc hypothesis of measurement non-invasiveness, i.e. that any (classical)

measurement can be performed such that it does not influence the outcome of a subsequent

measurement on the same system at a later (or earlier) time.

It might seem logically inconsistent to assume non-invasiveness and then compare it with

an invasive theory such as quantum mechanics. It has been observed however, that non-

invasiveness is in some sense equivalent to demanding perfect repeatability of a quantum mea-

surement. This requirement is compatible with quantum mechanics and allows the construction

of hidden variable models, which are identical to the ones originating from the assumption of
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Figure 4.1: Thought experiment for the violation of local realistic theories. a) Spatial scenario:

A source S emits two (entangled) qubits, which are sent to two remote observers A and B. Each

subsystem is subject to two measurements Ak and Bl, where k and l denote the measurement

settings at different sites. The outcomes of individual measurements are labelled r and s. b)

Thought experiment for the violation of non-invasive, realistic theories. A single system is

subjected to two measurements Ak and Bl , in this case occurring at different times tB > tA.

non-invasiveness [13, 14].

4.2 Hardy’s paradox in time

Despite the fact that two-body correlations in space and time are mathematically equiva-

lent [12], there are remarkable differences between measurements on quantum systems in

the two domains. The first can be found in the temporal version [14] of Hardy’s paradox

[1, 15, 16, 17, 18, 19, 20]. It describes a paradoxical situation in which quantum mechanics

allows a set of probabilities which are logically inconsistent within a classical framework. Con-

sider two observers, Alice and Bob, sharing a single system on which they conduct a joint

measurement with the choices Ak and Bl, with k, l = {0, 1}, at two different times, Fig. 4.1b.

The measurements are dichotomic, with the possible outcomes r, s = {0, 1}, and the probability

of a result r for Alice and s for Bob is P (r, s|l, k). For a classical system, which obeys realism

and non-invasiveness, r and s are defined before the measurement, and the choice k(l) cannot

possibly affect the value of s(r). We also stress that in this view measurement outcomes exist

as objective properties, either when the measurement actually took place or not.

Now consider the following set of outcome probabilities for different choices of measurements
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4.2. Hardy’s paradox in time

on this system:

P (1, 1|1, 1) > 0 (4.1)

P (1, 0|1, 0) = 0 (4.2)

P (0, 1|0, 1) = 0

P (1, 1|0, 0) = 0. (4.3)

Due to Eq. 4.1, Alice and Bob will occasionally obtain the outcome r=1 and s=1 for a joint

measurement A1, B1. By virtue of probabilities (4.2) they cannot observe the outcome r=0,

s=0 for the alternative measurement choice A0, B0. In order to explain (4.1), their system must

now however allow simultaneous outcomes r=1, s=1 for A0, B0. This, however, contradicts

requirement (4.3) [1, 14].

Quantum mechanics, of course, resolves the paradox [14]. Consider a single two-level quan-

tum system (qubit) prepared in the state |0〉. With the Pauli measurements A0=B1=−Z, and

A1=B0=X, where Z and X are the Pauli operators corresponding to the measurement along

the z and, respectively, x directions on the Bloch sphere, it satisfies the equalities (4.1)-(4.3),

with P (1, 1|1, 1)=0.25, see section 4.5.

In principle, a single observation of a detection event for the settings k, l = 1 (4.1) would—in

the absence of detections for settings (4.2)—provide a compelling proof that nature does not

obey the classical worldview established by the assumptions of realism and non-invasiveness

(or perfect repeatability [13, 14]). However, even in an ideal scenario, zero probabilities can

only ever be established to within an error governed by the number of measurement runs. In

practice, we have to deal with imperfect states, measurements and detectors, which exacerbates

this problem. We can instead, following Mermin [24], place a bound on P (1, 1|1, 1), given the

measured values of the other probabilities:

H =P (1, 1|1, 1)− P (1, 1|0, 0) (4.4)

−P (1, 0|1, 0)− P (0, 1|0, 1) ≤ 0.

We test this inequality in a two-photon experiment, see Fig. 4.3a. A system qubit is encoded

in the polarisation of a single photon; horizontal (H) and vertical (V) polarisations determine the

z-axis of the Bloch sphere. We implement the first, necessarily non-destructive, measurement

using a non-deterministic, photonic controlled-phase (CZ) gate, Fig. 4.2b. It acts on two

polarisation qubits, the signal |ψ〉s, and the meter |φ〉m. The state of the signal qubit controls

the meter, acting as the target qubit. An input state |V 〉s |D〉m, for example, undergoes the

controlled rotation |V 〉s |D〉m → |V 〉s |A〉m while |H〉s |D〉m → |H〉s |D〉m. The polarisation of

the signal can then be inferred by its action on the meter [9, 25, 26]. If the arbitrary state

|ψ〉s |D〉m is injected, we can measure Z on the signal just by observing whether the meter has

been rotated or not. Arbitrary directions can be chosen for the measurement by inserting a

proper rotation on the signal before the gate, as one would do with a regular polariser. This
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Figure 4.2: Experimental scheme. a) Temporal measurements. The signal and meter qubit

are encoded in orthogonal polarization states of two single photons, which are created via

spontaneous parametric down-conversion in a nonlinear crystal, pumped by a pulsed (76 MHz,

200 fs), frequency-doubled Ti:Sapphire laser at λ=820 nm. States are prepared with polarising

beamsplitters (PBS), a quarter- (QWP) and a half-wave plate (HWP). The signal photon

passes a controlled-phase gate (CZ), where it acts as the control qubit, with the meter photon

being the target. Behind the gate, we analyze the meter photon polarization and detect it

with a single-photon avalanche photo diode (APD), implementing the first measurement Ak.

Two HWPs (one incorporated into the preparation stage) set the basis for this non-destructive

measurement. The signal is stored in a 50 meter long fiber spool and, after Ak is concluded,

measured projectively, implementing Bl. A fiber polarization controller and a combination of

wave plates compensate for polarization rotation in the fiber. A coincidence logic analyzes

detection events within a time window of 4.4 ns. b) The CZ gate in detail, here shown in dual-

rail representation. We realize it with a single partially polarising beam splitter (PPBS), with

reflectivities ηV = 2/3 (ηH = 0) for the H (V) polarisation [21, 22, 23]. Quantum interference

results in a relative π phase shift of the vertical polarization components |V 〉s |V 〉m. The correct

functioning is heralded by a coincidence count between the two output arms of the PPBS, which

occurs with probability 1/9.
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4.3. CHSH inequality in time

rotation must be undone at the gate output, as shown in Fig. 4.2.

We experimentally measured P (1, 1|1, 1) = 0.2372± 0.0040, P (1, 1|0, 0) = 0.0181± 0.0008,

P (1, 0|1, 0) = 0.0190± 0.0013, P (0, 1|0, 1) = 0.0070± 0.0005, yielding

Hexp=0.193±0.004,

which violates inequality (4.4) by 45 standard deviations.

The key feature is that this temporal version of Hardy’s proof is considerably stronger than

its spatial analogue, where the left-hand side of (4.4) can be no greater than ∼ 0.09 [24];

our results surpass this limit by more than 24 standard deviations. The violation of Hardy’s

inequality in time can be achieved by any pure quantum state, provided that the observables

are chosen appropriately.

4.3 CHSH inequality in time

Surprisingly, and in stark contrast to its spatial analogue, such pure states are not required

for the Clauser-Horne-Shimony-Holt (CHSH) form of a temporal Bell inequality [27]. Unlike

Hardy’s paradox, the CHSH inequality considers correlations between points A and B. The

two results will be correlated whenever r = s and anti-correlated in the other case. Hence, the

correlation function for two observables Ak and Bl is

Ck,l=
∑
r,s

(−1)r+sP (r, s|k, l). (4.5)

By invoking realism and non-invasiveness to establish a bound on correlations one can then

define the temporal Bell inequality [12]:

S = |C0,0 + C1,0 + C0,1 − C1,1| ≤ 2, (4.6)

which has the same form as the CHSH inequality in the spatial domain [27]. Observing a value

above 2 implies entanglement in time.

For a quantum state ρ, the expectation value of Ck,l is

Ck,l = Tr(ρ · 1

2
[Ak, Bl]+), (4.7)

where [Ak, Bl]+ is the anti-commutator of the measurement operators [14]. For a single qubit,

a maximal violation of inequality 4.6, SQM = 2
√

2, can be obtained by choosing appropriate

measurements on the Bloch sphere. We select the same directions as in spatial CHSH ex-

periments: A0=Z, A1=X, B0=(Z+X)/
√

2 and B1=(Z−X)/
√

2. Remarkably, the correlators

Ck,l, in Eq. 4.7, and thus the parameter S do not depend on the choice of ρ, but only on the

measurement operators. If we denote ak and bl as the directions associated with Ak and Bl, the

correlation is simply given by [12] Ck,l=ak · bl, and for the indicated set of measurements, we
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Figure 4.3: Experimental violation of the state-independent temporal Bell inequality (4.6). The

classical limit is indicated by CL and the maximal achievable quantum value by QM. The first

six bars correspond to pure signal states the remaining two to mixed inputs, as explained in

the main text. The latter were obtained by switching the signal state between states |D〉 and

|A〉 while measurements were performed. The relative integration for |D〉 and |A〉 were chosen

according to the target purity of 0.5 for ρ1 and 0.75 for ρ2. The mixed states were verified via

single-qubit tomography.

will reach a maximal violation for any quantum state. This is not the case for the Leggett-Garg

form of a temporal Bell inequality [4, 5, 6].

We tested the temporal Bell inequality, Eq. (4.6), for a total of eight states; six (almost) pure

input states, {|H〉, |V 〉, |D〉, |A〉, |L〉, |R〉}; one mixed state ρ1∼(0.84 |H〉 〈H|+0.16 |V 〉 〈V |)
with purity P=0.74±0.01, and one fully mixed state ρ2∼1/2(|H〉 〈H|+ |V 〉 〈V |) with purity

P=0.50±0.01. The experimental results for these states are summarised in Fig. 4.3. The

obtained S-parameter was, on average,

Sexp = 2.58± 0.03,

which violates inequality (4.6) by 19 standard deviations. It is quite remarkable that we get a

clear violation even with a fully mixed state, for which one would—intuitively—not expect any

evident quantum signature.

In spatial Bell demonstrations, a less-than-maximal violation is usually blamed on the qual-

ity of the prepared quantum state. For the state-independent temporal inequality here, it is
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4.4. Discussion

due to imperfect measurement, which is in turn mainly limited by less-than-ideal two-photon

interference in the gate. In simple terms, the observed Bell value corresponds to a two-point

visibility of 0.91±0.01. We can assess the measurement performance in more detail by perform-

ing quantum process tomography [28] on our gate. The experimental process χexp associated

with the measurement has a purity of 92.4 ± 0.2% and a fidelity with an ideal CZ process of

93.7± 0.1%. The error bounds are calculated from 10 Monte Carlo runs assuming Poissonian

photon count statistics. The upper bound on the CHSH value (4.6), calculated from χexp, is

2.54 ± 0.01 averaged over all input states and, within error, in good agreement with the mea-

sured value. For the Hardy inequality (4.4), the estimated bound is 0.184 ± 0.003—slightly

below the respective experimental result, which is most likely due to temporal drift in the

optical setup.

4.4 Discussion

The study of temporal quantum phenomena provides a new resource for quantum information.

The authors of [12], e.g., propose a temporal quantum communication complexity protocol

where temporal entanglement provides a memory advantage over classical physics. It is con-

ceivable that we can also find classically-impossible, or more efficient quantum communication

tasks based on the strong quantum signature of temporal probabilities. A more fundamental

question is—analogous to non-local realistic models [29, 30] for spatially separated systems—

if, and to which degree, non-invasiveness might be relaxed while still allowing violation by

quantum mechanics. Intriguingly, for the Leggett-Garg inequality, the connection between the

measurement strength and the amount of violation is not straightforward: the less invasive the

measurement, the higher the violation [6, 9].

Another topic is the link between temporal quantum phenomena and quantum contextuality

[31]. Contextuality is a further example highlighting that quantum mechanics is incompatible

with a classical worldview and, similar to the Bell inequality violation demonstrated here, this

incompatibility can also be state-independent [32]. Ultimately, the fundamental differences of

quantum effects in the two domains may teach us more about the structure of space and time

and the abstract formalism of quantum theory [12].
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4.5. Additional experimental details

4.5 Additional experimental details

Here we show explicitly that the probabilities given in inequality 4.1 and equations 4.2-4.3 are

satisfied for the observables A0=B1=−Z, and A1=B0=X and an initially prepared qubit state

|0〉. Each observable is dichotomic with outcomes r, s={0, 1} given by the projection operators,

or eigenvectors, of each observable. We define the projection operators as Ai,j and Bi,j for the

measurement outcome i from a measurement choice of j for Alice and Bob respectively. They

are given explicitly as,

A0,0 = B0,1 = |0〉〈0| , A0,1 = B0,0 = |−〉〈−|

A1,0 = B1,1 = |1〉〈1| , A1,1 = B1,0 = |+〉〈+| , (4.8)

where |±〉 = (|0〉 ± |1〉)/
√

2. Alice makes her projective measurement first followed by Bob’s,

so from Eqs. 1.19 and 1.21 in section 1.1.7 we have that,

P (r, s|k, l) = PA(r|k) 〈ψ′| Bs,l |ψ′〉

= 〈0| A†r,kBs,lAr,k |0〉 , (4.9)

where |ψ′〉 is the state of the system after Alice’s measurement and PA(r|k) is the probability of

measuring r after Alice’s initial measurement Ar,k. Here we have used the fact that after Alice’s

initial projective measurement Ar,k, the state |ψ〉 is projected into the state Ar,k |ψ〉 /
√
PA(r|k)

with probability PA(r|k). Importantly though, this measurement is non-destructive, leaving the

state intact for the subsequent measurement Br,k. The explicit probabilities given in inequal-

ity 4.1 and equations 4.2-4.3 are

P (1, 1|1, 1) = 〈0 |+〉 〈+ |1〉 〈1 |+〉 〈+ |0〉 = 0.25

P (1, 0|1, 0) = 〈0 |+〉 〈+ |−〉 〈− |+〉 〈+ |0〉 = 0

P (0, 1|0, 1) = 〈0 |0〉 〈0 |1〉 〈1 |0〉 〈0 |0〉 = 0

P (1, 1|0, 0) = 〈0 |1〉 〈1 |+〉 〈+ |1〉 〈1 |0〉 = 0. (4.10)
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4.6. Proposed extension: polygamy of temporal entanglement

4.6 Proposed extension: polygamy of temporal entan-

glement

An extension to this experiment is the investigation of quantum correlations between measure-

ments made at three separate points in time. In this scenario, additional to Alice’s and Bob’s

measurements, Ak and Bl at times t1 and t2 respectively, there is a third party who makes a

measurement of the dichotomic observable Dm along the direction dm at a time t3. It can be

shown that the two-fold correlation between the measurements performed at t1 and t3, where

t1 < t2 < t3, is given by [12]

Ck,m = (ak · bl)(bl · dm). (4.11)

A correlation of this type for any projective measurement bl, with the exception of when

bl=ak [12], is incapable of violating the CHSH inequality defined in Eq. 4.6. One can think

of the measurement bl as “disentangling” the measurement outcomes at times t1 and t3 and

therefore rending any correlations between them lost in the measurement process.

However, since the two-fold correlation function between consecutive measurements is inde-

pendent of the initial state (see Eq. 4.7) we find that there exists just as strong a correlation

between measurements Ak and Bl as between Bl and Dm. In contrast to the correlations be-

tween systems of 3 or more spatially separated qubits, which display a tradeoff between the

number of entangled qubits and the total amount of distributed entanglement, or a “monogamy”

of entanglement [33], in the temporal case there is no such tradeoff: there can be a “polygamy”

of entanglement [12].

Experimentally both measurements Ak and Bl have to be non-destructive so we are required

to implement the circuit shown in Fig. 4.4. At times t1 and t2, two non-destructive measure-

ments Ak and Bl are implemented by a controlled-phase gate and the necessary basis rotations

RAk
and RBl

respectively. Finally the usual destructive projective measurement Dm is made

at the time t3. A maximal violation of the CHSH inequality between measurements made at

t1-t2 and t2-t3, could be achieved using the following set of measurement operators

A0 = D0 = Z

B0 = (Z +X)/
√

2

A1 = D1 = X

B1 = (Z −X)/
√

2. (4.12)

Importantly, the experiment depicted in Fig. 4.4 is feasible with current quantum optics capa-

bilities. The circuit shown here is a simple extension of the one in Fig. 4.2 of the main text. It

requires two non-deterministic CZ gates which perform subsequent non-destructive measure-

ments on the signal qubit, giving a heralded success probability of (1/9)2, see Section 2.2.4.

Additionally, as such an experiment would require the use of two independent SPDC sources

to generate two pairs of photons (three photons are used in the circuit, one is used as a trigger)
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4.6. Proposed extension: polygamy of temporal entanglement

Figure 4.4: Circuit diagram to demonstrate the polygamy of temporal quantum correlations.

An arbitrary state |ψ〉 is subject to two non-destructive measurements Ak and Bl, implemented

by two controlled-phase gates, at times t1 and t2 respectively and a destructive projective

measurement Dm at time t3. The basis for each measurement is chosen by implementing

the appropriate local rotations R on the signal qubit which is undone by R† after the first

two measurements. In the photonic implementation all qubits could be encoded onto the

polarisation degree of freedom of single photons which themselves are generated by spontaneous

parametric downconversion from two independent sources, see Section 2.2.5.

the count rates would be further lowered.
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CHAPTER 5

Introduction to Quantum Walks

I
n this chapter we lay out a mathematical framework for dealing with quantum walks.

However, to begin with we will remind ourselves of the classical random walk, or “drunk-

ards” walk [1]. The classical random walk [1] describes the motion of a particle moving

in random directions in space. The mathematical formalism of a random walk is the basis

for describing physical processes from diffusion of molecules in liquids (Brownian motion), to

economics where it is used to model the stock markets. Its most basic form is that of a single

particle, on a 1-dimensional lattice, which moves either left or right randomly at each time

interval. Such a system is identical to that of an old style ‘Galton board’ shown in Fig. 5.1a.

When the particle has an equal probability of moving left or right at each time step, or walk

iteration, the probability of finding the particle at a position x on the lattice after N � 1 steps

approaches a normal distribution given by,

p(x,N) =
2√

2Nπ
e−

x2

2N . (5.1)

5.1 Quantum walks

A quantum walk describes the motion of a quantum particle on a lattice and is the quantum

analogue of the classical random walk. The key difference between quantum and classical

random walks is the presence of coherence in the quantum case. This leads to interference

and therefore drastically different probability distributions which unlike the classical case have

a strong dependence on the initial state of the quantum walker. In addition, the walker can

spread much faster than is classically possible. We quantify the spread of the walker using the

standard deviation which, for discrete variables as in the case of a walker’s lattice, is given by,

S.D. =

√∑
i

pi(xi − x̄), with x̄ =
N∑
i

pixi, (5.2)

where pi is the probability of being at lattice position xi after N steps. In the quantum case the

standard deviation scales linearly with the number of steps N , as opposed to
√
N in the classical

case, see Fig. 5.2. The idea of a quantum particle moving about on a lattice and interfering with

itself can be traced back as early as 1958 [2] although the term ‘quantum random’ walk was not

coined until much later in 1993 by Aharonov et. al. [3]. In this more recent paper, Aharonov et.
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5.2. Discrete-time quantum walks

Figure 5.1: Classical random walks and quantum walks. a) The Galton board is an example of

a physical system that exhibits the properties of a classical random walk. In the game balls fall

from the top and encounter pegs which they bounce off of, either going left or right. The final

distribution of balls at the bottom is a binomial distribution. b) A toy example of a quantum

Galton board. Instead of bouncing left or right at each peg of the Galton board, a quantum

particle is placed in a coherent superposition of left and right. The final probability distribution

in the quantum case is starkly different from the classical one. In b the transparency of the

balls represent the probability of finding the ball at that position and time step.

al. describe the relationship between the quantum ‘coin’ and position of the walker and even

go on to describe a physical implementation of a quantum walk using an optics experiment.

There are two limits to the time evolution of quantum walks: discrete− and continuous−time.

In both cases the quantum walker spreads coherently across a lattice, but in the discrete case

the walker has an encoded ‘coin’ state that determines the direction it moves at each time step

and lattice position. In the continuous-time quantum walk the walker does not have an internal

coin state, but couples constantly to other lattice positions.

5.2 Discrete-time quantum walks

In the discrete case the walker exists in a Hilbert space made up of its ‘coin’ and position states.

The coin state is encoded into the internal state of the walker and in the simplest case is a two

level quantum state, or a qubit defined in the computational basis as

|ψcoin〉 = α |0〉+ β |1〉 , (5.3)

where |α|2 + |β|2 =1, see Section 1.1.1. The position state of the walker is a coherent superpo-

sition of discrete lattice positions, j, such that

|ψpos〉 =
∑
j

cj |j〉 , (5.4)

where
∑

j |cj|
2 =1. The total state of the walker is given by the tensor product of these two

states, |Ψ〉= |ψcoin〉 ⊗ |ψpos〉.
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Figure 5.2: Theoretical standard deviation of quantum (blue and red lines) and classical (black

line) random walks calculated using Eq. 5.2. Due to coherent interference a quantum walker

spreads much faster than a classical one. Although the final probability distribution of the

quantum walk is highly dependent on the initial state of the walker, the standard deviations

for the six pure initial states {|0〉 , |1〉 , |+〉 , |−〉} (blue line) and {|+i〉 , |−i〉} (red line) show

little difference in the spread of the walker, shown by the inset.

Each step of the quantum walk is composed of two operators that act independently on

these two degrees of freedom. The coin operator C, is an arbitrary rotation of the qubit state

|ψcoin〉 and the shift, or translation operator S, couples the coin state to the lattice positions j

and is given by

S =
∑
j

|j − 1〉 〈j| ⊗ |0〉 〈0|+ |j + 1〉 〈j| ⊗ |1〉 〈1| . (5.5)

Given that the walker evolves coherently between each time step the state of the walker at time

t = Nδt is given by

|Ψ(t)〉 = WN |Ψ(0)〉=(SC)N |Ψ(0)〉 , (5.6)

where W is the one step operator and |Ψ(0)〉= |ψcoin〉 |ψpos〉 is the initial state of the walker.

The most widely studied coin operator is the Hadamard, H (discussed earlier in Section 1.1.6),

which does the following transformation to the initial coin state,

H

[
α

β

]
=

1√
2

[
1 1

1 −1

][
α

β

]
=

1√
2

[
α + β

α− β

]
. (5.7)

This coin operator creates an equal superposition state in the computational basis and for this

reason it is often referred to as the unbiased coin. Figure 5.3 shows a number of quantum walk

probability distributions using the unbiased coin for various initial states after N=50 steps.

For homogeneous quantum walks, the walker experiences the same coin operator at every

lattice position, and it is these types of walks that produce the signature ballistic spread of the

walker with a standard deviation N , shown in Fig. 5.2. However, in the more general case
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Figure 5.3: Theoretical quantum walk probability distributions for various initial states, shown

on each graph in the ket and depicted on the qubit sphere. Each graph shows the lattice

position on the x−axis and the probability of detection on the y−axis. The number of steps,

N , in every case is 50.

of inhomogeneous quantum walks the walker can be subject to different coin rotations at each

lattice position [4]. This class of quantum walks is examined further in Chapter 7, where we

create a boundary between two topologically distinct quantum walks and observe interesting

behaviour at its interface.

5.3 Continuous-time quantum walks

Unlike in the discrete-time case the walker has no internal coin state in a continuous-time

quantum walk, instead the walk occurs entirely in position space and experiences a continuous

coupling to adjacent lattice sites. The continuous-time quantum walk was first described by

E. Farhi and S. Gutmann and we will use their formalism here [5]. We define the N position

states of the walker with an orthonornal set of states {|i〉}, where i=1, . . . , N and 〈i |j 〉=δi,j.
The Hamiltonian with matrix elements Hi,j, describing the coupling between sites i and j is
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Figure 5.4: Pictorial representation of continuous-time quantum walk graphs. a) The walker

spreads out along a line and will experience a reflection at the edges of the lattice. b) In the

case of a circular graph the walker is subject to periodic boundary conditions, signified by the

extra off diagonal elements in the Hamiltonian.

given by

〈i|H |j〉 =


−γi,j if i 6= j and i is connected to j

0 if i 6= j and i is not connected to j

diγi,j if i = j

, (5.8)

where di is the degree of position i, specifying how many adjacent sites it is connected to, and

the coupling rate between sites i and j is given by γi,j. That is, a particle at site i has a

probability γi,jδt of being at site j after a time δt and in general all the γi,j’s can be different.

Figure 5.4 shows two commonly studied graphs, the line and circle, and gives the Hamiltonians

in the cases where all γi,j’s are equal.

To determine the time dynamics, that is the probability of finding the walker at a particular

position state |i〉 at time t, we define the state

|Ψ(t)〉 =
∑
i

Ci(t) |i〉 , (5.9)

where
∑

i |Ci(t)|
2 =1 for all t, and project it onto the ith position state. The probability ampli-
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5.4. Motivations for studying quantum walks

tudes evolve under a Schrödinger like equation given by,

i
∂ 〈i |Ψ(t)〉

∂t
= 〈i|H |Ψ(t)〉

i
∂Ci(t)

∂t
= diγi,iCi(t)−

∑
j

γi,jCj(t). (5.10)

The probability of finding the walker at site i at time t is given by Pi(t)= |Ci(t)|2.

5.4 Motivations for studying quantum walks

Perhaps the most discussed application of the quantum walk formalism is in quantum comput-

ing. This prospect came out of work by Childs [6] and Lovett [7] who showed that quantum

walks, in the continuous- and discrete-time regimes respectively, are universal for quantum

computation, but did so only for a single quantum walker. However, there is a caveat to these

proofs, which is that while the formalism of quantum walks has been proven to be universal for

quantum computation, the physical resources required to implement a quantum algorithm scale

exponentially with the size of the problem in the single walker scenario, therefore rending them

inefficient for quantum computation. The proof then becomes non-useful in the sense that one

would never consider encoding a large quantum algorithm into the quantum walk formalism

because of this scaling issue. Multiple walkers on the other hand may be the answer to this

scalability problem [8]. With multiple walkers one is able to produce true multi-partite entan-

glement, a resource that has been shown to be crucial in the development of many quantum

algorithms [9]. Recently it was shown by Childs et al. [10] that multiple-walker continuous-time

quantum walks can indeed be used to perform efficient universal quantum computation.

For a quantum system, specifying the potential that a particle moves in determines its

Hamiltonian and therefore through the Schödinger equation, the particle’s time dynamics. The

quantum walk formalism therefore provides a perfect model for studying coherent transport

of excitations between different potential sites [11, 12]. By creating the correct particle po-

tential, one is able to emulate a variety of interesting physical systems using quantum walks.

Interesting examples include the simulation of Zitterberwegung (trembling motion) [13], Klein

tunnelling [14], Anderson localisation [15] and topological phases [16]. The last of these is an

experiment performed as part of this thesis and is the subject of Chapter 7. Another recent

proposal yet to be realised, uses the continuous-time quantum walk as a model system for

energy transport in photosynthetic systems [17, 18]. In 2007 the authors of [19] found that

long-lived quantum coherence plays a substantial role in the energy transfer mechanisms of the

Fenna-Matthews-Olsen (FMO) complex in green sulphur bacteria. Subsequently, it was shown

by the authors of [17] and [18] that the system could be modelled as an excitation undergoing a

continuous-time quantum walk lattice. Interestingly, they found that added decoherence in the

quantum walk could be responsible for the high energy-transfer efficiencies in FMO complex,

in a process called environmentally-assisted quantum-transport.
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5.4. Motivations for studying quantum walks

The prospects of performing quantum computations and quantum simulations with quan-

tum walks provide the motivation for their experimental realisations. As a contribution to this

effort in the next three chapters we present three quantum walk experiments with single and

multiple photon inputs.
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Abstract

Quantum walks have a host of applications, ranging from quantum computing to the simula-

tion of biological systems. We present an intrinsically stable, deterministic implementation of

discrete quantum walks with single photons in space. The number of optical elements required

scales linearly with the number of steps. We measure walks with up to 6 steps and explore

the quantum-to-classical transition by introducing tunable decoherence. Finally, we also inves-

tigate the effect of absorbing boundaries and show that decoherence significantly affects the

probability of absorption.
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6.2. Quantum walks with single photons

6.1 Introduction

T
he random walk is a fundamental model of dynamical processes that has found extensive

application in science. The quantum walk (QW) is the extension of the random walk to

the quantum regime [1, 2]. Here, the classical walker is replaced by a quantum particle, such as

an electron, atom or photon, and the stochastic evolution by a unitary process. A key difference

is that the many possible paths of the quantum walker can exhibit interference, leading to a

very different probability distribution for finding the walker at a given location.

An important motivation for work on QW’s have been their applications to quantum com-

putation: not only were they instrumental to Feynman’s original quantum computer (as the

clock mechanism [3]), but it has since been shown that they represent a universal computational

primitive [4, 5] and have inspired novel quantum algorithms [6, 7, 8]. QW’s have also been used

to analyze energy transport in biological systems [9, 10].

Despite a few early experimental demonstrations [11, 12, 13, 14], experimentalists have

only recently begun to develop the level of control over single quantum particles required to

implement discrete-time QW’s, leading to demonstrations with neutral atoms in position space

[15], ions in phase space [16, 17] and single photons in time [18]. Continuous-time quantum

walks have different outcomes, applications and experimental challenges, see, e.g., [19].

6.2 Quantum walks with single photons

In this work, we present discrete-time QW’s of single photons in space. Our approach is robust,

due to the use of intrinsically stable interferometers, yet highly versatile—enabling control over

every operation at every step of the walk. Of particular interest is the ability to introduce a

controlled amount of decoherence, which we use to explore the quantum-to-classical transition.

Besides being of fundamental interest, decoherence in QW’s can improve the performance

of certain computational protocols [20] and is particularly important in their application to

describing energy transport [9, 10]. Finally, we investigate the effect of introducing absorbing

boundaries into the walk, as theoretically investigated by [21, 22].

The simplest random walk occurs on a one-dimensional lattice. The particle begins at one

site and each step of the walk consists of a move to a neighboring site on the left or right,

determined by the outcome of a coin flip. In the analogous QW, the coin is represented by a

two-level quantum system whose orthogonal levels we will designate |H〉 (horizontal) and |V 〉
(vertical). Each step of the QW starts with an analogue of the coin flip: a unitary coin operator

C is applied to the coin space. An unbiased, or Hadamard, coin operator transforms the coin

so that |H〉→ |D〉=(|H〉+ |V 〉)/
√

2,

|V 〉→ |A〉=(|H〉− |V 〉)/
√

2. Following each coin operation is the shift operator,

S =
∑
j

|j − 1〉 〈j| ⊗ |H〉 〈H|+ |j + 1〉 〈j| ⊗ |V 〉 〈V | , (6.1)
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6.2. Quantum walks with single photons

which moves the particles to one of the neighboring lattice sites, conditional on the quantum

coin state. Therefore, the operation W = SC makes up a single step of the QW, and a walker

in an initial state |ψ〉 is found in the state WN |ψ〉 after N steps.

The quantum and random walks can be considered the extremes of a spectrum, with pure

quantum evolution turning into classical evolution if there is sufficient decoherence [23, 24, 25].

In addition, all the intermediate walks are special cases of the broad category of quantum

stochastic walks [26]. Various mechanisms of decoherence have been studied [25]; here we con-

sider pure dephasing, since this corresponds to the decoherence mechanism in our experiment.

The system is described by a density matrix ρ which at each step undergoes the evolution

ρN+1 = (1− q)WρNW
† + q

∑
i

KiWρNW
†K†i , (6.2)

where the Kraus operators Ki = |i〉 〈i| correspond to pure dephasing. The parameter q is the

probability of a dephasing event occuring at each step. If q = 0, the walk is a pure QW, while

q = 1 reproduces the random walk. Note that to observe the quantum-to-classical transition,

gradual decoherence must be applied at each step, not just to the initial coin state [23, 24, 25].
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Figure 6.1: Experimental schematic. a) From each pair of single photons created via spon-

taneous parametric downconversion in a PPKTP crystal, one is injected into the free-space

mode “0” of the quantum walk. Arbitrary initial coin (polarization) states are prepared by

the first polarizing beam splitter (PBS) and waveplate combination. Six pairs of coin (Ci)

and shift (Si) operators implement six steps of the walk. Coincident detection of photons at

detectors D2 and D1 (4.4 ns time window) herald a successful run of the walk. b) Details of

our optical mode numbering convention for the first two steps. The dashed lines trace out one

of the interferometers which are used to align the quantum walk. c) A relative angle between

two beam displacers reduces the recombined photon’s temporal (∆t) and spatial (∆x) mode

overlap, thereby implementing tunable decoherence.
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6.3 Experimental setup

Our implementation of the discrete QW on a line represents a polarization analogue of the orig-

inally proposed linear-optical version of the Galton board based on beamsplitters and phase-

shifters [27, 13]. A similar, polarization-encoded setup has been proposed for cube polarizing

beamsplitters [28]. Figure 6.1a shows a schematic of the experiment.

Pairs of single photons were created via type-II spontaneous parametric downconversion in

a, non-linear, potassium titanyl phosphate (PPKTP) crystal. This crystal was pumped by a

5 mW diode laser centred at 410 nm and emitted orthogonally polarized photon pairs with

a wavelength of 820 nm and a FWHM bandwidth of 0.6 nm. The pairs were separated at

a polarizing beamsplitter; one photon from each pair served as a trigger, while the second

photon was launched into the QW. At an average heralded photon rate of ∼20, 000 s−1, the

mean longitudinal distance between two photons was about 250, 000 times longer than the

setup length of ∼60 cm. The probability of randomly creating more than one photon pair

simultaneously was ∼9 · 10−5, i.e., only one photon was in the setup at any given time.

Quantum coin states were encoded in the polarization |H〉 and |V 〉 of the input pho-

ton. Throughout our experiment, the initial coin state was set to left-circular polarization,

|L〉=(|H〉+i |V 〉)/
√

2, using a quarter- and a half-wave plate, leading to symmetric probability

distributionsm, see Fig. 5.3 in Section 5.2. For the results presented here, the remaining coin

operators C were Hadamards, realised with half-wave plates set to 22.5◦. We can, however, pre-

pare arbitrary pure input states as well as arbitrary coin operators for each step with suitable

wave plate settings.

The lattice sites of the QW were represented by longitudinal spatial modes. The shift

operator S acting on these modes was implemented by a 27 mm long, birefringent calcite

beam-displacer. The displacers had a clear aperture of 20×10 mm2 and were mounted on

manual, tip-tilt rotation stages with a resolution of 217µrad/5◦ turn. The optical axis of each

calcite prism was cut so that vertically polarized light was directly transmitted and horizontal

light underwent a 2.7 mm lateral displacement into a neighboring mode. Lattice sites were,

typical for discrete walks on a line, labeled so that there were odd sites at odd time steps and

even sites at even times.

The first two steps of the QW are shown in detail in Fig. 6.1b. The spatial modes after step

1 were recombined interferometrically in step 2. A series of steps then formed an interferometric

network, Fig. 6.1a. We aligned this network iteratively, to a single interferometer per step. For

example, the second beam displacer was aligned to maximize the interference visibility of the

interferometer in Fig. 6.1b: the state |D〉 was input in mode “0” and the beam displacer rotated

to maximize the overlap of the output mode “0” with |D〉. The third displacer was then aligned

to the second and so on. We reached interference visibilities of typically ∼ 99.8% per step.

The photons emerging in the N+1 spatial modes at the output of an N -step QW were cou-

pled into an optical fiber and subsequently detected by a single-photon avalanche photodiode,

in coincidence with the trigger photon. We measured the probability distributions sequentially,
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translating the fiber coupler between the individual modes using a manual translation stage.
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Figure 6.2: Probability distributions for successive steps of the a) quantum and b) fully deco-

hered (classical) walks up to the sixth step. Dashed lines show experimental data and solid

lines show theoretical predictions. Probabilities are obtained by normalizing photon counts at

each position to the total number of counts for the respective step. The insets show horizontal

scans across the walk lattice for the 5-step quantum walk (coupled into single-mode fiber) and

decohered random walk (multi-mode fiber), respectively. c) Normalized standard deviation of

the probability distribution for quantum (black circles) and classical (red triangles) walks for

1 to 6 steps. Lines show the theoretical values; error bars are smaller than symbol size.

6.4 Results

The measured probability distributions for detecting the photon at a given site, for 1 to 6 steps,

are shown in Fig. 6.2a. The experimental data is in excellent agreement with theory, with an

average L1-norm distance, given by,

d=
1

2

∑
i

∣∣pexpi − pthi
∣∣ , (6.3)

of 0.031 for the coherent and 0.017 for the decohered walks. The quality of our data degrades

somewhat for a higher number of steps, largely due to non-planar optical surfaces, which

caused small relative phase shifts between the multiple interferometers. The decohered walk is

insensitive to phase errors and therefore better agrees with theory.

Our scheme has several advantages: first, the interferometric network is inherently stable.

The transversal mode-match is fulfilled because two beams emerging from one displacer will

always be parallel, independent of small deviations in the optical alignment. The stability and

alignment procedure of the QW grid are facilitated by the fact that the N interferometers

between steps N and (N+1) are formed between only 2 optical components. Our setup—even

though it is interferometric—does therefore not require active phase locking. Secondly, our

system scales well, with the number of optical components increasing as 2N (as opposed to
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(N2+N)/2 in [27, 13]), and exhibits low optical loss of ∼ 1% per step. The remaining obstacle

to scalability are non-ideal optical components, a problem that can be alleviated with careful

manufacturing or the use of shorter displacers.

6.4.1 Implementing decoherence

A unique feature of this setup is that tunable decoherence can be introduced by intentional

misalignment of QW steps, Fig. 6.1c. Setting a non-zero relative angle between neighboring

beam displacers leads to both a temporal delay and a transversal mode mismatch between

interfering wave packets. Because the coincidence time window was much longer than the

temporal shift we essentially integrated over the timing information, which corresponds to

dephasing, cf. Eq. 6.2. Similarly, we traced over the spatial mode information by coupling

the photons into a multi-mode fiber—as opposed to the single-mode fiber used for the coherent

walks shown in Fig. 6.2a. In practice, this reduced the interference contrast in all interferometers

in the respective step. The QW was fully decohered (q=1 in Eq. 6.2) when the interference

visibility in each individual step reduced to 0, which occured at a relative angle of 10.5◦ in our

experiment. Figure 6.2b shows the experimental results given by our system at full decoherence

for steps 1 to 6. The probabilities—as expected for a classical random walk—follow a binomial

distribution around the origin.

A distinguishing feature of an ideal QW is the speed at which the walker traverses the line.

In particular, the standard deviation of the QW is proportional to the number of steps and

not, as for the classical walk, its square root [2]. This has been exploited to design quantum-

walk–based search algorithms that exhibit a Grover-like quadratic speedup [7]. The measured

standard deviations for both our quantum and fully decohered walks are shown in Fig. 6.2c.

The results show very good agreement with theory: the fully decohered walk spreads diffusively,

while the quantum walk spreads ballistically.

Tunable decoherence enabled us to investigate the quantum-to-classical transition for a 5-

step walk. By applying Eq. 6.2 to a two-step walk, see Fig. 6.1b, we calculated the interference

visibility in output mode “0” after the second beam-displacer as a function of the decoherence

q. We then adjusted the relative angle, Fig. 6.1c, between beam displacers to a target visibility.

Fig. 6.3 shows the resulting probability distributions, compared to theory (Eq. 6.2).

6.4.2 Investigating absorbers in a quantum walk

Finally, we demonstrate another qualitative difference between classical and quantum walks,

by incorporating absorbing boundaries. While a classical walker is eventually absorbed in the

presence of an absorbing boundary, a quantum walker escapes with probability 1−2/π [21, 22].

A difference between the two exit probabilities first occurs after 5 steps, making it experimen-

tally accessible with our current setup and providing a novel way of characterizing the degree

of coherence in the walk. Absorbing boundaries were implemented using beam blocks in every

“−1” spatial mode. Figure 6.4 shows the measured single photon transmission probabilities in
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the quantum and fully decohered (classical) cases.

6.5 Discussion

The most compelling features of our scheme are the ability to add tunable decoherence to a QW

and the fact that every individual lattice site is fully accessible at any given time step. Future

work could be to implement random or position-dependent coin operators to study walks on

random environments [29], inhomogeneous walks [30] and topological insulators [31]. Indeed, in

Chapter 7 we present an experimental study of inhomogeneous quantum walks in the context

of their topological properties.

Importantly, the results we have presented in this work rely only on single particle inter-

ference, that is to say, the single particle quantum walk behaviour is obtainable using classical

light fields alone. Should one wish to obtain truly non-classical behaviour, the introduction of

two or more walkers is required. In our case we could add another walker on a separate line,

using the existing setup with a vertical offset between input beams, or on the same line, with

two or more photons launched in the same (or neighboring) spatial modes. This would allow

exploration of entangled QW’s [32], as high-quality polarization-entangled photons can be rou-

tinely produced at high rates [33]. Finally, the setup can be used to prepare photon-number

and path-entangled states across a large number of modes [34].
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Figure 6.4: Transmission probability of quantum (black circles) and classical (red triangles)

walkers with an absorber located at position −1 and initial coin state |L〉. The transmission

was obtained as the ratio of the number of transmitted photons measured with absorbers in

place to the number measured without them. Error bars are smaller than symbol size. The

insets show the fifth step walk with an absorber at position −1 (red columns) compared to the

original walk (blue columns) for the quantum (QW) and classical case (CW).

6.6 Note: Limitations of single-particle quantum walks

Although the number of optical elements in our physical quantum walk architecture scales

efficiently (2N) with the number of optical modes N , following the previous argument laid out

in Section 5.4 of this thesis, all single particle quantum walks scale inefficiently for performing

scalable quantum computation. In our case the number of optical modes for example would

scale exponentially as 2N , meaning a useful quantum computation would require an exponential

number of resources. This scalability flaw rules out the use of single particle quantum walks

for any type of universal quantum computation.

Recent work however [35] shows that with the introduction of multiple particles—in particu-

lar those subject to bosonic statistics such as photons—it becomes computationally intractable

to predict the probability distributions as the number of particles increases. It has been pro-

posed that this is due to the path entanglement generated by the multiple walkers, leading to an

exponential scaling of the number of parameters required to describe such a system of multiple

walkers [36]. A more formal argument is given in the work of Asronson and Arkhipov [35] who

show that calculating multi-photon scattering probabilities in linear optical networks is equiv-

alent to the computationally intractable problem of calculating the permanents sub-matricies

of the unitary evolution describing the optical network. The computational problem, dubbed

BosonSampling [35], has also been shown to be isomorphic with the quantum walk formal-

ism [37].

93



6.7. Proposed extension: Multi-photon quantum walks

6.7 Proposed extension: Multi-photon quantum walks

To explore multiple walkers with our photonic setup we could implement the scenario depicted

in Fig. 6.5. In this setup both photons from the spontaneous parametric downconversion source

are injected into the walk setup at positions −1 and +1. Each photon is then subject to the

same initial state preparation and subsequent coins operators using half- and quarter-wave

plates as in the single photon case. Theoretical probability distributions for coincident photon

measurements at the output are shown in Fig. 6.6.

Importantly, if the photons are injected into the setup at the same time, and are entirely

indistinguishable, they will exhibit photon bunching throughout the walk seen as a generalised

Hong-Ou-Mandel interference (see Section 2.2.4). As a measure of this non-classical interference

the right-most column of Fig. 6.5 shows the visibility of interference at modes i and j, which

is defined as

Vi,j =
P dist
i,j − P ind

i,j

P dist
i,j

(6.4)

where P dist
i,j and P ind

i,j are the probabilities of observing a coincident photon pair at modes i and

j for distinguishable and indistinguishable photons respectively.
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Figure 6.5: Experimental setup for a two-photon discrete-time quantum walk. Two photons are

created via spontaneous parametric downconversion and injected into the quantum walk setup

at lattice positions −1 and +1. The coin state of each photon is initialised using a polarising

beam splitter and a half- and quarter-wave plate. After the photons propagate through the

optical network they are detected using two single photon detectors, D1 and D2. The 50/50

beam splitter at the output ensures that we can measure two photons in the same optical mode,

however, it comes at the expense of a 50% reduction in the overall coincident photon count

rate.
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6.7. Proposed extension: Multi-photon quantum walks
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Figure 6.6: Probability distributions for two-photon quantum walks initialised at positions −1

and +1, each with the initial coin state |R〉= |H〉 − i |V 〉. The plots show the probability of

detecting coincident photons at detectors 1 and 2 at the positions indicated on the horizontal

axes for indistinguishable photons (left column) and distinguishable photons (centre column).

The visibility for each step is plotted on in the right column.
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Abstract

Topological phases exhibit some of the most striking phenomena in modern physics. Much of

the rich behaviour of quantum Hall systems, topological insulators, and topological supercon-

ductors can be traced to the existence of robust bound states at interfaces between different

topological phases. This robustness has applications in metrology and holds promise for fu-

ture uses in quantum computing. Engineered quantum systems—notably in photonics, where

wavefunctions can be observed directly—provide versatile platforms for creating and probing

a variety of topological phases. Here we use photonic quantum walks to observe bound states

between systems with different bulk topological properties and demonstrate their robustness

to perturbations—a signature of topological protection. While such bound states are usually

discussed for static (time-independent) systems, here we demonstrate their existence in an ex-

plicitly time-dependent situation. Moreover, we discover a new phenomenon: a topologically

protected pair of bound states unique to periodically driven systems.
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7.2. Results

7.1 Introduction

P
hases of matter have long been characterised by their symmetry properties, with each

phase classified according to the symmetries that it possesses [1]. The discovery of the

integer and fractional quantum Hall effects in the 1980s has led to a new paradigm, where

quantum phases of matter are characterised by the topology of their ground-state wavefunctions.

Since then, topological phases have been identified in physical systems ranging from condensed-

matter [2, 3, 4, 5, 6, 7, 8, 9] and high-energy physics [10] to quantum optics [11] and atomic

physics [12, 13, 14, 15].

Topological phases of matter are parametrised by integer topological invariants. As inte-

gers cannot change continuously, a consequence is exotic phenomena at the interface between

systems with different values of topological invariants. For example, a topological insulator

supports conducting states at the surface, precisely because its bulk topology is different to

that of its surroundings [9, 8]. Creating and studying new topological phases remains a diffi-

cult task in a solid-state setting because the properties of electronic systems are often hard to

control. Using controllable simulators may be advantageous in this respect.

Here we simulate one-dimensional topological phases using a discrete time quantum walk [16],

a protocol for controlling the motion of quantum particles on a lattice. We create regions with

distinct values of topological invariants and directly image the wavefunction of bound states at

the boundary between them. The controllability of our system allows us to make small changes

to the Hamiltonian and demonstrate the robustness of these bound states. Finally, using the

quantum walk we can access the dynamics of strongly driven systems far from the static or

adiabatic regimes [17, 18, 19], to which most previous work on topological phases has been

restricted. In this regime, we discover a topologically protected pair of non-degenerate bound

states, a phenomenon that is unique to periodically driven systems.

7.2 Results

7.2.1 Split-step quantum walks

Discrete time quantum walks have been realised in several physical architectures [20, 21, 22, 23,

24]. Here we use the photonic setup demonstrated in ref. [24] to implement a variation of these

walks, the split-step quantum walk [25] of a single photon, with two internal states encoded

in its horizontal, |H〉, and vertical, |V 〉, polarisation states. The quantum walk takes place on

a one dimensional lattice (Fig. 7.1). One step of the split-step quantum walk consists of four

steps. First, a polarisation rotation R(θ1) of the single photon is achieved with a suitable wave

plate (see Methods), then a polarisation-dependent translation T1 of |H〉 to the right by one

lattice site using a calcite beam displacer. This is followed by a second rotation R(θ2), and

finally another translation T2 of |V 〉 to the left. The quantum walk is implemented by repeated

applications of the one-step operator U(θ1, θ2)=T2R(θ2)T1R(θ1).
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Figure 7.1: Experimental scheme for split-step quantum walks. A polarisation-encoded single

photon, created via spontaneous parametric downconversion (SPDC), undergoes a succession of

steps consisting of polarisation rotations, R(θ1), R(θ2), and translations, T1, T2, which displace

|H〉 to the right and |V 〉 to the left, respectively. The rotations are implemented by half-wave

plates while the translations are implemented using birefringent calcite beam displacers. To

probe the topological properties of the quantum walk, semi-circular half-wave plates are used

to create spatially inhomogeneous rotations, R(θ1−), R(θ1+) for lattice positions x ≤ 0 and

x > 0 respectively. The photon starts near the boundary between R(θ1−) and R(θ1+) at the

lattice position ‘0’ and is therefore subject to the rotation R(θ1−) initially. From then on as

the photon spreads throughout the interferometer it is subject to both rotations that make up

R(θ1). The output probability distribution is imaged with a single-photon avalanche detector.
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Figure 7.2: Band structure and phase diagram of split-step quantum walks. a) A typical band

structure of the effective Hamiltonian Heff(θ1, θ2) for the split-step quantum walk (here, θ1=π/2

and θ2=0). For most θ1 and θ2, the spectrum displays a gap. b) Topology of Heff(θ1, θ2). Each

eigenstate of Heff(θ1, θ2) consists of a quasi-momentum k (see Methods Section 7.4.2) and a

corresponding polarisation, shown here on a Bloch sphere using the symbols from a. As k runs

from −π to π (black arrow in a), the polarisation follows a closed trajectory around a great

circle (black arrow in b). The winding number of this trajectory, W , characterises the topology

of Heff(θ1, θ2). c) Phase diagram of Heff(θ1, θ2) that shows the winding number W as a function

of θ1 and θ2. The transition lines correspond to points where the spectral gap of Heff(θ1, θ2)

closes at eigenvalues E=0 (black dash-dotted line) and E=π (red dashed line).

The propagation of the photon in the static experimental setup can be described by an ef-

fective time-dependent Schrödinger equation with periodic driving. The dynamics of the quan-

tum walk can be understood through the effective Hamiltonian Heff(θ1, θ2), defined through

U(θ1, θ2)=e−iHeff(θ1,θ2)τ/~, where τ is the time required for one step of the quantum walk.

Throughout this paper, we chose units such that τ/~ = 1. Therefore, the quantum walk

described by the evolution U(θ1, θ2) corresponds to a stroboscopic simulation of the effective

Hamiltonian Heff(θ1, θ2) viewed at unit time intervals. That is, after n steps of the quantum

walk, the photon evolves according to Un(θ1, θ2)=e−inHeff(θ1,θ2), meaning that the evolution un-

der the quantum walk coincides with the evolution under Heff(θ1, θ2) for integer multiples of

τ .

The topological structure underlying split-step quantum walks is revealed by studying the

structure and symmetry of Heff(θ1, θ2). Heff(θ1, θ2) has a gapped spectrum, with two bands

corresponding to opposite polarisations (Fig. 7.2a). Because the quantum walk is translationally

invariant, each eigenstate is associated with a quasi-momentum k and a superposition of |H〉
and |V 〉. In addition, this class of quantum walks has a chiral symmetry described in ref. [25]

(also detailed in the Methods), which requires that the polarisation component of any eigenstate

be confined to a particular great circle on the Bloch sphere. Therefore, as the quasi-momentum

k traverses the first Brillouin zone from −π to π, the polarisation component of the eigenstate

traces a closed path confined to that great circle, see Fig. 7.2b and Methods. The total number
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7.2. Results

of times W that this closed path winds about the origin is the winding number and gives the

topological invariant of Heff(θ1, θ2).

Because W has to be an integer, it cannot be changed by small modifications of the effective

Hamiltonian. That is, W can only change when the spectrum of Heff(θ1, θ2) closes its gap while

preserving chiral symmetry. For the split-step quantum walk, two distinct topological phases

with W=0 and W=1 exist as can be seen in the phase diagram shown in Fig. 7.2c. The two

phases are separated by lines along which the gap closes.

As we mentioned above, non-trivial topological phases support localised states at their

boundaries. Because our experimental setup allows access to individual lattice sites, we can

probe this phenomenon by creating a boundary between regions where the dynamics are gov-

erned by two different gapped Hamiltonians Heff(θ1−, θ2) and Heff(θ1+, θ2), characterised by

winding numbers W− and W+ respectively. We create the boundary by making θ1 spatially

inhomogeneous with θ1(x)=θ1− for lattice positions x≤0 and θ1(x)=θ1+ for x>0. Although this

breaks translational symmetry, the chiral symmetry remains (see Methods). When W− 6=W+,

it is expected that topologically robust localised states exist at the boundary near x=0. This

can be understood in a heuristic fashion as follows. When W− 6=W+, the winding number W−

of the bulk gapped Hamiltonian Heff(θ1−, θ2) can only be changed to that of Heff(θ1+, θ2) given

by W+ by closing the gap of the system. Thus, near the boundary between these two regions,

the energy gap closes, and it is expected that states exist within the gaps of the bulk spectra

of Heff(θ1−, θ2) and Heff(θ1+, θ2). Because extended states do not exist inside the gap, such a

state is necessarily localised at the boundary. That is, a change in topology at a boundary

is accompanied by the presence of a localised state. Furthermore, we are able to show that

the localised states are robust against perturbations[26] such as small changes of quantum walk

parameters or the presence of a static disordered potential caused by, for example, small spatial

variations of rotation angles θ1 and θ2.

7.2.2 Experimental confirmation of bound states

To probe the existence of the bound states, we initialise a photon next to the boundary between

two topologically distinct quantum walks (Fig. 7.1). In the absence of bound states, the photon

is expected to spread ballistically, with the detection probability at the origin quickly decreasing

to zero. However, if there is a bound state, the bound state component of the initial state will

remain near this boundary even after many steps.

We first implemented split-step quantum walks with θ2=π/2 and θ1− and θ1+ such that

W−=W+=1, as shown on the phase diagram in Fig. 7.3a. For initial photon polarisations of

|H〉 and |V 〉, shown in Fig. 7.3b,c respectively, the detection probability at the origin quickly

decreases to zero. On the other hand, in Fig. 7.3d, with parameters chosen to create a boundary

between topologically distinct phases W−=0 and W+=1, we observe the existence of at least

one bound state as a peak in the probability distribution near the origin after four steps.

We note that our experiment is able to detect bound states with fewer steps than the

theoretical study in ref. [25], because we use a sharper boundary between distinct topological
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Figure 7.3: Experimental quantum walks with topologically protected bound states. a) Phase

diagram, with symbols indicating the parameters (θ1−, θ1+, θ2), and the corresponding winding

numbers for each experimental case b-e. b)-e) Experimental probability distributions of split-

step quantum walks for θ2=π/2 and a spatially inhomogeneous rotationR(θ1). The probabilities

of finding the photon at a particular site are indicated by the shading in the upper panel. The

bar graphs below each dataset compare the measured (blue) and predicted (green) probabilities

after the fourth step. Experimental errors due to photon counting statistics are not visible on

this scale. b) and c) show the absence of a bound state near x=0 for initial polarisations

|H〉 and |V 〉 respectively. d) Initial polarisation of |H〉, the presence of a bound state with a

pronounced peak near x=0 after the fourth step. The phase boundary is indicated on the bar

plot by the dash-dotted black line. e) Initial polarisation of |H〉, the presence of the bound

state is robust against changes to the parameters in d). f) Calculated quasi-energy spectrum

of the effective Hamiltonian for d. The bound state with quasi-energy E=0 is indicated by the

red dot.

104



7.2. Results

phases. As a result, the bound states become narrower and are more easily detected.

We can test the robustness of these bound states against a variety of changes in microscopic

parameters to confirm that they are topologically protected. In Fig. 7.3e, θ1− and θ1+ are

shifted from those of Fig. 7.3d while maintaining W−=0 and W+=1, and we confirmed the

continued existence of a bound state. The quasi-energy E of this localised state, that is, the

eigenvalue of the effective Hamiltonian associated with this state, can be found by explicit

calculation (Fig. 7.3f). We indeed find a single state at E = 0.

7.2.3 Observation of pairs of bound states in quantum walks

Our experiment also reveals a new topological phenomenon unique to periodically driven sys-

tems, which can be probed by studying split-step quantum walks with θ2=0, and the θ1 parame-

ters shown in Fig. 7.4a. With the appropriate choice of basis (see Methods), this quantum walk

becomes equivalent to the one described by the one-step operator U=iTR(θ1), where T=T1T2

can be implemented with a single calcite beam displacer, extending the experiment to seven

steps. This class of quantum walks can only realise a single topological phase characterised

by the winding number W=0. Therefore, we do not expect bound states for spatially inhomo-

geneous θ1 based on winding numbers. However, the evolution of the probability distribution

shown in Fig. 7.4b displays period-2 oscillations in the vicinity of the origin. This observation

strongly suggests the existence of at least two bound states whose quasi-energies differ by π.

Again, we can demonstrate that these bound states are robust against small perturbations

to the walk parameters. The parameters for Fig. 7.4c are chosen so that they are continuously

connected with those for Fig. 7.4b. As expected, we observe the period-2 oscillations in the

evolution of probability distributions indicating the existence of a pair of bound states whose

quasi-energies differ by π.

We confirm the absence of bound states for split-step quantum walks with θ2=0 when

θ1− and θ1+ are continuously connected without crossing a phase boundary. The results in

Fig. 7.4d,e show detection probabilities that quickly decrease to zero near the boundary for

initial polarisations |H〉 and |V 〉, respectively. As |H〉 and |V 〉 span the space of internal states

for the walker, this shows that indeed there is no bound state near x=0.

The existence of a pair of bound states with quasi-energy difference π is a previously un-

known topological phenomenon. It is a consequence of chiral symmetry, defined as the existence

of an operator Γ that anti-commutes with the Hamiltonian, ΓHΓ−1= −H. An eigenstate |ψ〉
with energy E therefore implies the existence of an eigenstate Γ−1 |ψ〉 with energy −E. That is,

states with energies E and −E generally come in pairs—the only exception is if E=−E. In a

static system, a single state with energy zero can exist because its energy satisfies E=−E [26].

It is topologically protected: it cannot be shifted in energy by weak, symmetry-preserving

perturbations because a single state cannot be split into two. In a periodically driven sys-

tem, because the effective Hamiltonian is defined through a one-step evolution operator by

U=e−iHeff(θ1,θ2), the quasi-energies of Heff(θ1, θ2) are defined only up to 2π. In particular, E=π

and E=− π correspond to the same quasi-energy, and therefore E = π represents another spe-
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Figure 7.4: Experimental quantum walks with a pair of topologically protected bound states.

a) Phase diagram, with symbols indicating the parameters (θ1−, θ1+, θ2), and corresponding

winding numbers for each experimental case b-e. b)-e) Experimental probability distributions

of split-step quantum walks for θ2=0 and a spatially inhomogeneous rotation R(θ1). The

probabilities of finding the photon at a particular site are indicated by the shading in the upper

panel. The bar graphs below each dataset compare the measured (blue) and predicted (green)

probabilities after the seventh step. Experimental errors due to photon counting statistics are

not visible on this scale. b) Initial polarisation |H〉. A pair of bound states with period-

2 oscillations are present and there is a large probability of detecting the photon near the

boundary after seven steps. The phase boundary is indicated on the bar plot by both the

dash-dotted black and dashed red lines. b) Initial polarisation |H〉. Small perturbations made

to the quantum walk parameters of b) do not change the topology and therefore the bound

states remain. d) and e) show the absence of a bound state near x=0 for initial polarisations

|H〉 and |V 〉, respectively. f) Quasi-energy spectrum of the effective Hamiltonian for b). In

addition to the E=0 (red dot) bound state there is an E=π bound state (blue star).
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cial value of quasi-energy satisfying E=−E. Thus, like zero-energy states of static systems, a

single state with quasi-energy π is topologically protected [17, 18]. The coexistence of E=0 and

E=π states suggested by the period-2 oscillations observed in Fig. 7.4b, is verified through the

explicit calculation of the quasi-energy spectrum presented in Fig. 7.4f. In the Methods section,

we give the characterisation of this structure in terms of topological invariants of periodically

driven systems and prove their topological robustness.
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Figure 7.5: Paired bound states in the presence of decoherence. a), b) Probability distributions

for split-step quantum walks with additional decoherence, q=0.2, for the initial polarisation

state |H〉. The probabilities of finding the photon at a particular site are indicated by the

shading in the upper panel and the bar graphs below each dataset compare the measured

(blue) and predicted (green) probabilities after the seventh step. Experimental errors due

to photon counting statistics are not visible on this scale. For these walks θ2=0 and R(θ1) is

spatially inhomogeneous. a) A pair of bound states is observed between two distinct topological

phases despite the added decoherence. The phase boundary is indicated on the bar plot by

both the dash-dotted black and dashed red lines. b) Absence of bound states in the presence

of decoherence. c) Sum of probabilities at lattice positions around the boundary (−1, 0 and

+1) for integer steps of the split-step quantum walks with and without bound states. The solid

lines show theoretical predictions and the dashed lines are the experimental results, error bars

are smaller than the marker size. The difference between bound and unbound states can be

seen for both datasets, with no added decoherence (black), and with added decoherence (blue).

7.2.4 Bound states under decoherence

One feature of our optical quantum walk setup is the ability to tune the level of decoherence [24].

Each pair of beam displacers forms an interferometer, which can be intentionally misaligned to

add temporal and spatial walk-off [24]. This process, coupled with measurement of the photon,

corresponds well to pure dephasing [24]. If the system at step N is described by the density

matrix ρN it will evolve according to:

ρN+1 = (1− q)UρNU † + q
∑
i

KiUρNU
†K†i (7.1)

where q is the amount of dephasing and Ki are the associated Kraus operators. For q=0, Eq. 7.1

describes a pure quantum walk, while q=1 represents a system without any quantum coherence,

that is, the evolution is described by a classical random walk. Although q=0 indicates that we

do not introduce deliberate dephasing, some may arise from experimental imperfections.

Although the topological bound states observed in the paper are no longer eigenstates of

the quantum walk under dephasing, signatures of bound states are still observable for a small
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number of steps. This result demonstrates that it is possible to study topological phenomena,

for short times, in other systems that might be more prone to decoherence.

In Fig. 7.5, we show split-step quantum walks with θ1 and θ2 parameters equivalent to

those presented in Fig. 7.4b,d. However, here we have introduced additional decoherence at a

level of q=0.2 according to Eq. 7.1. Figure 7.5a shows the same period-2 oscillation as before

demonstrating that a pair of bound states can be seen with this small amount of decoherence.

The absence of a bound state is confirmed when we chose W−=W+=0, and the results are

shown in Fig. 7.5b.

In the presence of dephasing, the bound state observed in Fig. 7.4b gradually decays as the

number of steps increases. However, for slow dephasing, this decay is slow and, for few steps,

the probability distribution is still peaked near the boundary compared to the cases with no

bound states (Fig. 7.5a,c summarises the effect of decoherence on the probability distribution

around the boundary region).

7.3 Discussion

The bound states observed in Fig. 7.3d,e are direct analogues of the zero-energy states in

the Su-Schrieffer-Heeger (SSH) model of polyacetylene [27] and the Jackiw-Rebbi model of a

one-dimensional spinless Fermi field coupled to a Bose field [10]. Specifically, the SSH model

describes conduction in conjugated organic polymers, of which polyacetylene is the simplest

example. By studying this polymer from a topological perspective, they identified the formation

of a ‘topological soliton’ [27] that is responsible for the charge-transfer doping mechanism in

this molecule. Despite these theoretical predictions, its topological nature has never directly

been confirmed. With our system, we have simulated the same class of topological phases as

the SSH model and demonstrated their robustness to system perturbations for the first time.

The experiment can be extended to other symmetry classes and higher dimensions. In

particular, the beam displacer architecture could also implement a two-dimensional walk [28],

which would allow observation of topologically protected edge states. Furthermore, one could

simulate many topological classes of static systems that have been theoretically predicted but

have not yet been realised because of the lack of natural materials with suitable symmetries [25].

In addition, novel topological phenomena, unique to periodically driven systems, are expected

in other symmetry classes and dimensions. The versatility of photonic quantum walks makes

them ideal tools for exploring these captivating phenomena [17].

7.4 Methods

7.4.1 Rotation operators implemented in the experiment

The implementation of split-step quantum walks with a photon requires the rotations of po-

larisation, written as R(θ). In this experiment, we used half-wave plates which implement
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R(θ)=e−iσyθ/2σz, where σi are the Pauli matrices such that σz |H〉= |H〉 and σz |V 〉=− |V 〉.

7.4.2 Winding numbers of split-step quantum walk

In our theoretical proposal [25], we considered creating a boundary between regions with differ-

ent topological numbers by varying the second rotation angle θ2. We described the topological

structure of the split-step quantum walk in terms of the one-step evolution operator, or Flo-

quet operator, U(θ1, θ2)=T2R(θ2)T1R(θ1) and associated chiral symmetry operator Γθ1 , which

depends only on θ1 and satisfies Γ−1
θ1
U(θ1, θ2)Γθ1=U †(θ1, θ2). In this experiment, we imple-

mented inhomogeneous split-step quantum walks by varying the first rotation angle, θ1. To

maintain the chiral symmetry in the system, it is necessary to characterise the dynamics in

terms of an alternative chiral symmetry operator that depends only the second rotation angle,

θ2. In the following, we explain and define such a chiral symmetry operator. As a consequence

of considering such a chiral symmetry operator, the present phase diagrams are slightly different

from those in ref. [25].

Because the origin of time for a periodically driven system is arbitrary, we can characterise

the topology of the split-step quantum walk with a different initial time, namely in terms of

the evolution operator given by,

U ′(θ2, θ1)=T1R(θ1)T2R(θ2). (7.2)

This alternative choice corresponds to making a half-period shift of the origin of time. Using

the momentum-space expressions,

T1=
∑
k

eikσz/2eik/2 |k〉 〈k| and T2=
∑
k

eikσz/2e−ik/2 |k〉 〈k| , (7.3)

we see that U ′(θ2, θ1) is different from U(θ1, θ2) only through the exchange of θ1 and θ2, that

is, U ′(θ2, θ1)=U(θ1, θ2). Therefore, it is clear that the chiral symmetry operator of U ′(θ2, θ1)

is given by Γθ2 , and that the winding numbers of U ′(θ2, θ1) are the same as those of U(θ1, θ2).

The chiral symmetry of U ′(θ2, θ1) only depends on the second rotation angle θ2, and thus the

symmetry is preserved even when θ1 is varied in space. Therefore, it is possible to construct

inhomogeneous quantum walks with boundaries between topologically distinct phases, while

preserving the required chiral symmetry across the entire system.

7.4.3 The split-step quantum walk with θ2 = 0

We studied the behaviour of the split-step quantum walk U = T2R(θ2)T1R(θ1) with θ2 =

0,noting that R(θ=0)=σz. In the experiment, we implemented the quantum walk with Floquet

operator Uex=T2T1R(θ1). In this section, we show that these two quantum walks are related

through a unitary transformation, and therefore represent equivalent dynamics with equivalent

topological properties.
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The split-step quantum walk with θ2 = 0 is described by the Floquet operator

U(θ1, 0)=T2σzT1e
−iσyθ1/2σz = T2T1e

iσyθ1/2. (7.4)

It is simple to check that the unitary transformation V=e−ixπ/2 acts on T=T2T1 such that

V −1TV=iTσz, where x is the coordinate operator. Therefore, U(θ1, 0) and Uex are unitarily re-

lated through V −1U(θ1, 0)V=iTe−iσyθ1/2σz=iUex. Apart from a global phase, the experimental

implementation is equivalent to the split-step quantum walk with θ2 = 0.

7.4.4 Topological invariants of 0 and π energy bound states

In this section, we show that the topological classification of periodically driven systems with

chiral symmetry is given by Z × Z, and give explicit expressions for the topological invariants

in terms of the wavefunctions of the bound states. These invariants provide another way

to understand the topological protection of the 0- and π-energy bound states found in the

experiment.

We consider the bound states at energy 0 because analogous arguments apply to the bound

states at π. Suppose that there are N0 degenerate bound states with energy 0, which we

label |φ0
α′〉 with α′=1, . . . , N0. Because the chiral symmetry operator Γ anticommutes with the

Hamiltonian, Γ2 commutes with H. When there is no conserved quantity[29] associated with

Γ2, it is possible to choose the phase of Γ such that Γ2 = 1. Because Γ |φ0
α′〉 is an eigenstate of

H with energy 0, we can choose the basis of zero-energy states such that they are eigenstates

of Γ. We denote the zero-energy states in this basis as |ψ0
α〉 and their eigenvalues under Γ as

Q0
α. As Γ2 = 1, Q0

α is either +1 or −1.

We now show that the sum of eigenvalues, the integer Q0 ≡
∑

αQ
0
α, represents the topolog-

ical invariant associated with zero-energy bound states. The invariant Qπ for π-energy bound

states is constructed in an analogous fashion, Qπ =
∑

α 〈ψπα|Γ |ψπα〉, where |ψπα〉 are the π-energy

bound states. To show that these quantities are indeed topological invariants, we show that

perturbations to the Hamiltonian that preserve the chiral symmetry cannot mix the zero- and

π-energy bound states with the same eigenvalues of Γ, and therefore cannot change the energies

of these states away from 0 or π. Let H ′ be a perturbation to the system such that {Γ, H ′} = 0.

Now we evaluate the matrix element of {Γ, H ′} = 0 between the 0 (π) energy states. The result

is

0 =
〈
ψ0
α

∣∣ {Γ, H ′} ∣∣ψ0
β

〉
=

{
2Qα 〈ψ0

α|H ′
∣∣ψ0

β

〉
for Qα = Qβ

Qα 〈ψ0
α|H ′

∣∣ψ0
β

〉
−Qα 〈ψ0

α|H ′
∣∣ψ0

β

〉
= 0 for Qα = −Qβ.

(7.5)

Thus, bound states with the same eigenvalues Qα cannot mix, while those with different eigen-

values in general do mix and are not protected by chiral symmetry. Because one can break up

any finite change of the Hamiltonian into successive changes of small perturbations, one can

repeat this argument and show that the values Q0 and Qπ cannot change unless the bound
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states at 0 and π energies mix with the bulk states.

In the limiting case of the split-step quantum with θ2=0, θ1−= − π, θ1=π, we can analyse

the bound states of the shifted evolution operator,

U ′(θ2, θ1)=T1R(θ1)T2, (7.6)

with chiral operator Γθ2=σx. The bound-state wavefunctions can be easily computed and one

finds a single zero-energy bound state with Q0 = 1 and a single π-energy bound state with

Qπ= − 1. Because the pair of bound states found in the experiment arises in a situation that

is continuously connected with this limiting split-step quantum walk without closing the gaps,

the observed pair is characterised by the same values of the topological invariants.

112



7.5. Additional experimental details

7.5 Additional experimental details

In this section we present supplementary data that was not published in the original manuscript

due to journal length restrictions.
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Figure 7.6: Experimental split-step quantum walks with inhomogeneous θ2. a) Phase diagram,

with symbols indicating the parameters (θ1, θ2−, θ2+), and corresponding winding numbers for

the experimental cases b and c. b) and c) Experimental probability distributions of split-step

quantum walks for θ1=π/2 and a spatially inhomogeneous rotation R(θ2). The probabilities of

finding the photon at a particular site are indicated by the shading in the upper panel. The

bar graphs below each dataset compare the measured (blue) and predicted (green) probabilities

after the fourth step. Experimental errors due to photon counting statistics are not visible on

this scale. b) Initial polarisation |H〉. A bound states is present as there is a large probability

of detecting the photon near the boundary after four steps. The phase boundary is indicated

on the bar plot by both the dashed red line. c) Shows the absence of a bound state near

x=0 for the initial polarisation state |H〉. d) Calculated quasi-energy spectrum of the effective

Hamiltonian for b. The bound state with quasi-energy E=0 is indicated by the red dot.

7.5.1 Split-step quantum walks for inhomogeneous θ2

In the main text we discuss split-step quantum walks with an inhomogeneous rotation R(θ1)

across the walk lattice. Here we present results with an inhomogeneous rotation R(θ2) and show

that the presence or absence of bound states persists as a result of the topological nature of the

quantum walk. The results are shown in Fig. 7.6. These results add weight to the argument

that indeed the presence or absence of bound states in split-step quantum walks is a purely

topological effect.
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Figure 7.7: Bound states in the presence of decoherence, for walks with θ1=π/2 and R(θ2) is

spatially inhomogeneous. a), b) Probability distributions for split-step quantum walks with

additional decoherence, q=0.2, for the initial polarisation state |H〉 and the same parameters

as shown in Fig. 7.6b and c. The probabilities of finding the photon at a particular site are

indicated by the shading in the upper panel and the bar graphs below each dataset compare the

measured (blue) and predicted (green) probabilities after the fourth step. Experimental errors

due to photon counting statistics are not visible on this scale. (a) A bound state is observed

between two distinct topological phases despite the added decoherence. The phase boundary is

indicated on the bar plot by both the dashed red. (b) Absence of a bound state in the presence

of decoherence. (c) Sum of probabilities at lattice positions around the boundary (−1, 0 and

+1) for integer steps of the split-step quantum walks with and without bound states. The solid

lines show theoretical predictions and the dashed lines are the experimental results, error bars

are smaller than the marker size. The difference between bound and unbound states can be

seen for both datasets, with no added decoherence (black), and with added decoherence (blue).
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7.5.2 Additional data for bound states under decoherence

In the main text we only presented decoherence data for split-step quantum walks with θ2=0

and an inhomogeneous R(θ1). In Fig. 7.7 we present the split-step quantum walks that are

subject to additional decoherence with θ1=π/2 and an inhomogenous R(θ2). The results show

a clear signature of the bound state despite the presence of decoherence. Finally, in Fig. 7.8

we show split-step quantum walks under more decoherence than was implemented in the main

text. The results still show a clear difference in the walker population near the phase boundary,

between quantum walks with and without bound states. Again, these results demonstrate that

the signature of a topological bound state is not restricted to experiments that are minimally

affected by decoherence.
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Figure 7.8: Summed probabilities for lattice positions −1, 0 and +1 for integer steps of the

split-step quantum walk with additional decoherence indicated on the graphs. The difference

between bound and unbound states can be seen despite the introduction of decoherence into the

system. The amount of decoherence is given by the q parameter, as defined in Eq. 7.1. a) Split-

step quantum walks with θ1=π/2 and an inhomogeneous R(θ2) (see Fig. 7.6 for data without

additional decoherence) and b) split-step quantum walks with θ2=0 and an inhomogeneous

R(θ1) (see Fig. 7.4 for data without additional decoherence). In both a) and b) there is a phase

boundary at x=0, therefore one expects to observe a bound state neatr this boundary. The

solid lines are theoretical predictions and the dashed lines are experimental results. Error bars

are smaller than the marker size.
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Abstract

Integrated optics provides an ideal testbed for the emulation of quantum systems via continuous-

time quantum walks. Here we study the evolution of two-photon states in an elliptic array of

waveguides. We characterise the photonic chip via coherent-light tomography and use the

results to predict distinct differences between temporally indistinguishable and distinguishable

two-photon inputs which we then compare with experimental observations. Our work highlights

the feasibility for emulation of coherent quantum phenomena in three-dimensional waveguide

structures.
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8.1. Introduction

8.1 Introduction

C
omputer modeling of complex systems has contributed greatly to modern science due

to sophisticated approximation methods and steadily increasing computational power.

However, classical simulation methods are ultimately impractical for modeling even moderately-

sized quantum systems due to an exponentially-increasing parameter space. As first proposed

by Feynman[1], a possible solution is for the model itself to operate via quantum instead of

classical dynamics, either through simulation, in which a digital model on a quantum computer

yields physical quantities as in e.g. [2, 3], or through emulation, in which a quantum system is

modeled by a better-controllable system with a sufficiently similar Hamiltonian [4].

Quantum walks [5, 6]—an extension of the classical random walk into the quantum world—

provide an ideal framework for emulation due to their rich dynamics [7, 8, 9]. There are

two limiting cases, discrete and continuous. In discrete-time quantum walks, one or more

(interacting) quantum particles (the so-called quantum coin) evolve on a graph, with their

evolution governed by their internal quantum (coin) states. The discrete-time quantum walk

on a line is the best studied example of such a walk and it has been demonstrated in a number

of physical systems [10, 11, 12, 13, 14].

In continuous-time quantum walks, in contrast, there are no coin operations and the evolu-

tion is defined entirely in position space [15]. These walks require a well-controlled, continuous

coupling between vertices, or lattice sites. Integrated optics is perfectly suited for this task

and lithographically written, evanescently coupled surface waveguides were the first system

used to demonstrate a quantum walk on a line with coherent light [16]. Unfortunately, surface

waveguides can only realise simple, one-dimensional graphs with limited interconnectivity.

Physically more interesting three-dimensional structures can be engineered in laser written

optical waveguide arrays in dielectric materials such as fused silica [17, 18], a platform that has

been shown to have suitable fidelity for photonic quantum information processing [19]. The

two-dimensional graphs that can be realised with this technique allow the study of new quantum

walk phenomena, such as wave communication [20], cooperative quantum games [21] and the

creation of topological phases in two dimensions [22]. Examples of direct-write waveguide array

structures relevant for these problems include rings, hexagonal lattices, X-shapes and triangular

shapes [23, 24, 25]. To date, however, these have only been explored with classical light inputs,

and specifically in the context of 2D quantum walks in [25]. True quantum effects, and genuine

efficiency improvements in emulating quantum systems, will only emerge for non-classical input

states as pointed out (for discrete-time walks) in [26]. The first such walk in the continuous

regime was recently demonstrated in a linear waveguide array with two-photon inputs in [27].

Here, we study multi-walker continuous-time 2D quantum walks in an optical chip containing

an elliptical arrangement of coupled direct-write waveguides. We characterise the optical chip

via coherent light tomography, effectively realising single particle walks, and use the results to

predict correlations for non-classical two-photon walks which we compare with experimental

observations. Our work is an important step towards the emulation of quantum systems in
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8.2. Device description

three-dimensional integrated photonic architectures.

8.2 Device description
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Figure 8.1: Schematic of the integrated waveguide circuit (drawing not-to-scale) and associated

output. At the input the waveguides are equally spaced by 127µm. They then converge via

a two-stage fan-in to their eventual elliptical configuration. The inset is a CCD image of

the output: the waveguides are arranged with equal angular spacing around an ellipse with

semi-major and semi-minor radii of 10.2 and 7.0 µm respectively.

The circuit for the quantum walk, shown in Fig. 8.1, consists of six waveguides written

into a chip of high-purity fused silica using an ultrafast direct-write technique, described in

detail in [19]. In this technique, femtosecond Ti:Sapphire laser pulses tightly focused inside the

sample yield localized refractive index modifications. The sample is translated in all dimen-

sions to create true three dimensional curved waveguides, a process that cannot be replicated

by conventional lithographic techniques. Our chip was written with a 1 kHz repetition rate,

800 nm, 120 fs laser, passed through a 520 µm slit and focused with a 40x0.6 NA microscope

objective. The maximum refractive index difference between the waveguides and the substrate

is approximatelty ∆n ∼ 0.0062.

At the input, the six waveguides are arranged in a line with equal spacing of 127 µm,

allowing each waveguide to be addressed individually and simultaneously. The waveguides

converge via a two-stage fan-in to their final configuration as shown in Fig. 8.1. In the primary

fan-in stage, which occupies the first ∼ 8.5 mm of the chip, the waveguides follow S-bend curves

from a linear input arrangement to an elliptical configuration twice as large in radius as their

final configuration. In the second fan-in stage, during the next 1 mm, further S-bends shrink

this ellipse to have a semi-major axis of 10.2 µm and semi-minor axis of 7.0 µm. Studying

an elliptical array provides additional insights into the coupling between waveguides as this

shape breaks the degeneracy of the inter-waveguide distance. The expected inter-waveguide

coupling constants are given in the appendix; notably some of the next-nearest-neighbour and

even next-next-nearest-neighbour couplings are non-negligible over the interaction length in

the chip. All the S-bends are of the ‘raised-sine’ form which has been shown to minimise
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8.3. Optical chip characterisation

bend loss [28], while the two-stage fan-in configuration was designed to minimise coupling (in

particular, asymmetrical coupling) between waveguides before they attain their final interaction

configuration.

The light evolution in this array is governed by the evanescent inter-waveguide coupling

which drops off exponentially as a function of the waveguide distance. As an approximation,

it can be theoretically described by a coupled-oscillator Hamiltonian, see Appendix.

8.3 Optical chip characterisation
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Figure 8.2: Experimental setup. The chip can be addressed with 6 individual single mode fibres.

The input light polarisation is set by a combination of half- and quarter-wave plates (HWP,

QWP) and polarising beamsplitters (PBS). The chip output is magnified and then collimated

with two spherical lenses. a) The chip was characterised with an 820 nm laser diode, imaged

onto a CCD camera via a polarising prism. b) Quantum walks were performed with two-

photon inputs created via spontaneous parametric downconversion (SPDC). The relative delay

∆z between the two input photons was adjusted using a translation stage. We used a 50/50

beamsplitter (BS) and two ∼ 500 µm apertures to select a combination of output ports and

measure the two-photon correlations in coincidence using single-photon avalanche diodes.

The experimental setup is shown in Fig. 8.2. Light was coupled into the chip via a V-groove

array, which houses six single-mode optical fibres on a line, matching the input spacing of

the circuit waveguides. We first illuminated individual waveguides in the chip using coherent

light from an 820 nm laser diode, see Fig. 8.2a. The output intensity profiles were processed

in Matlab and converted into probability distributions. When compared to the numerical

simulation obtained with the software suite, used to design the chip, the predicted and observed

distributions at the circuit output differed significantly, see Fig. 8.3. This behaviour prompted

us to empirically determine the full optical response of the circuit using, polarisation-sensitive,

coherent light tomography.

For this tomography the input polarisation was set using a bare reference fibre on top of

the chip. Into each waveguide we input the following set of polarisation states:

{|H〉 , |V 〉 , |D〉 , |A〉 , |L〉 , |R〉}, (8.1)
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Figure 8.3: Comparison of numerical simulations and observed probability distributions for

the optical chip in figure 8.1. a) The propagation dynamics predicted using optical waveguide

simulation software (see Appendix) with light input into waveguide 1, as a function of z.

The simulation includes modelling of inter-waveguide coupling during the 1 mm second fan-

in stage at z≤0. The curves for waveguides 2 and 3, and 4 and 5 overlap due to symmetry.

b) The predicted distribution at the output of the circuit, and the corresponding observed

probabilities. The asymmetry in the measured distribution indicates that the optical response

of the chip is not scalar, instead suggesting some vectorial behaviour. This was confirmed by

further tomographic analysis.

where |H〉 and |V 〉 represent horizontal and vertical polarisation and |D/A〉=(|H〉 ± |V 〉)/
√

2,

|L/R〉=(|H〉± i |V 〉)/
√

2. For each output we measured the same six polarisation components,

obtaining a total of 216 CCD images.

Using output intensity distributions taken from these images, we subsequently reconstructed

an array of 36 Mueller matricesM [29]. This array completely characterises the optical response

of the circuit, quantifying the effects of three distinct processes: notably polarisation-dependent

inter-waveguide coupling, birefringence, and polarisation-dependent loss [29].

The results indicate strong birefringence in each of the six waveguides. Most notably, when

the state |H〉 is input into waveguide 5, 29% of the overall output state across the six channels

is rotated to |V 〉. For the input channels 1, 2 and 4, the overall polarisation rotation was small,

with more than 91% of |H〉 being retained at the output. Furthermore, there was significant

polarisation-dependent coupling between the waveguides for all input channels. For instance,

for input |H〉 into waveguide 1, 80% of the total output intensity was observed in channel 6,

however when the input state was |V 〉, only 11% of the total output intensity was contained

in this channel. An exemplary selection of Mueller matrices, illustrated on Poincaré spheres

and quantifying these effects is shown in Fig 8.4. The full matrix arrayM can be found in the

Appendix.

In addition, the whole chip exhibited significant polarisation dependent loss; integrating

over all output channels, we observed an excess 38% loss of |V 〉 compared to |H〉 for waveguide
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8.4. Two-photon quantum walks

Figure 8.4: Poincaré sphere representation of the corresponding Mueller matrices, Mout,in (see

Appendix) describing the transformation from input waveguide 6 to outputs 1 − 6. Input

states shown on the outer Poincaré spheres are mapped to different locations on the blue

ellipsoids, simultaneously showing polarisation-dependent coupling and birefringent effects in

the respective channel. The relative orientation of the ellipsoids is indicated by the set of

orthogonal states |H〉 (red arrow), |D〉 (green arrow) and |L〉 (black arrow), and the point of

contact between sphere and ellipsoid is indicated by the yellow arrow. Note that the arrow

lengths are proportional to output power, not degree of polarisation. The numbers above each

sphere give the normalised average power coupled into the respective channel.

6. This may be due to a combination of absorption into the bulk of the circuit, or polarisation

dependence of the input coupling efficiency from the V-groove array to the chip, or both.

8.4 Two-photon quantum walks

The coherent-light tomography encompasses all possible single-photon walks in this chip, since

a single photon shares the coherence properties of a coherent light beam. However, these walks

can be efficiently simulated classically and it is not until we input multi-photon states that we

observe quantum effects [26].

A schematic of the setup for the two-photon walk experiment is shown in Fig. 8.2b. Pairs

of single photons are created via spontaneous parametric down-conversion: a mode-locked

76 MHz laser centred at 820 nm is frequency doubled to 410 nm and focused into a 2 mm

long β-barium borate (BBO) crystal, phase-matched for type-I downconversion. After passing

through interference filters at 820±2.5 nm, the degenerate photon pairs are coupled into single-

mode fibres equipped with manual polarisation controllers. Photons are coupled into the chip

via the V-groove fibre array.
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8.4. Two-photon quantum walks

We created photon pairs at a rate of 180 kHz, of which we detected a total of 6.5 kHz at

the circuit output. The single-photon loss is thus ∼ 73%, factoring out the 50/50 beamsplitter,

which reduces the number of coincidences by 50%. The main loss contributions stemmed from

the poor input coupling efficiency between the V-groove array and the chip (∼31%). The

imperfect coupling is mostly due to a slight mismatch between the spacing of the fibres in the

V-groove array and the locations of the input ports of the circuit. Intrinsic waveguide loss was

negligible in comparison. The observed loss could be significantly reduced by using a more

sophisticated imaging system.

We carried out two-photon quantum walks in two separate scenarios: with temporally dis-

tinguishable and indistinguishable photons. When the photons entering the chip are temporally

distinguishable, i.e. with a time delay larger than their respective coherence times, they perform

independent quantum walks with local evolution. When they enter the chip simultaneously,

∆z = 0, they experience non-classical two-photon interference [30], yielding quantum dynamics,

including the generation of two-photon entanglement. The theoretic qualitative difference be-

tween these two cases is described in the Appendix. Figure 8.5 shows an exemplary calibration

scan of coincidence counts as a function of temporal delay. The signature of indistinguishable

quantum walkers manifests as a dip in the rate of coincident detection events, C, at zero delay,

with an interference visibility of V = (Cmax − Cmin)/Cmax of 38± 2%.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
1400

1600

1800

2000

2200

2400

2600

2800

Δz [mm]

C
o

n
ic

id
en

ce
 C

o
u

n
ts

 [4
 s

]-1

   
   

   
   

   
 

Figure 8.5: Example of observed two-photon interference between output waveguides 2 and 6 as

a function of relative path difference between photon pairs input into neighbouring waveguides

1 and 2. The visibility of the dip is V2,6 = 38± 2%, calculated from a Gaussian fit (blue line).

The results for two-photon quantum walks for distinguishable and indistinguishable photons

input into the nearest-neighbour channels 1 and 2 are shown in Fig. 8.6a, as the normalised

coincidence probability distributions, Γd and Γi respectively. Distinct differences are observed

between the two cases, as suggested by the strong two-photon interference signature in Fig. 8.5.

The measured distributions are compared with predictions, Fig. 8.6b, which are based on

determining the components of the waveguide array unitary U , for a particular input polarisa-

tion, see Appendix for details. The generalised overlap fidelities S, defined in the Appendix,

between our measurements and predictions are Sd=93.4±0.3% for the distinguishable walkers,

and Si=91.6± 0.4% for the indistinguishable walkers.

Figure 8.7a shows correlation matrices for inputs 2 and 4 as an example of two-photon walks
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Figure 8.6: Correlation matrices for nearest-neighbour input channels 1 and 2. We recorded the

photon-coincidence counts at each of the 36 pairs of output channels in a 20 second time-window.

a) The measured and b) predicted correlation matrices for (left) temporally distinguishable

photon pairs Γd, (center) temporally indistinguishable simultaneous walkers Γi, and (right) the

difference Γd − Γi. The coincidence probability at the outputs 2 and 6 between the two plots

reflects the two-photon interference dip shown in Fig. 8.5. The measured uncertainties are not

plotted, as they are too small to be seen on the plots.
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Figure 8.7: Correlation matrices for next-nearest neighbour input channels 2 and 4. The plots

follow the same convention as those in Fig. 8.6, for both a) the measured and b) predicted

correlation matrices. Uncertainties are again too small to be seen on the graphs.
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8.5. Discussion

with next-nearest neighbour input ports. We again observe non-classical interference signatures,

with visibilities up to V2,4=28± 3%. The fidelities between the measured two-photon matrices

and their corresponding predictions, Fig. 8.7b), are Sd = 97.9± 1%, and Si = 96.2± 0.8%.

8.5 Discussion

In conclusion, we have performed the first quantum walk in a three-dimensional waveguide

structure with genuine non-classical inputs. This is a significant step towards emulating Hamil-

tonians which can be approximated by evanescently coupled waveguides. However, we have

also identified a number of obstacles which must be addressed before such an approach can be

fully realised.

First, despite the apparent good agreement between our predictions and the observed two-

photon probability distributions, the two-photon visibilities—which quantify the measured non-

classical effects—matched the predictions poorly. This is because the Mueller-matrix array de-

rived from the coherent beam intensities only yields the squared absolute values of the elements

of the system’s unitary U ; it does not determine the (generally complex) phase relations of the

waveguide array. These phase factors could in principle be obtained by phase-sensitive coherent

light tomography, as proposed in [25, 31]. An alternative technique [32] requires a single N -

photon input state (in this case N = 6) and photon-number resolved detection at each output.

However, generating Fock states is hard and both techniques suffer from the large number of

measurements required to fully characterise the six-port system. This is a perennial problem in

quantum science: the exponential power granted by multi-photon walks on big lattices makes

it hard to experimentally characterise system dynamics. A potential solution might be to use

compressive sensing techniques, which have recently been exploited for exponentially efficient

quantum process tomography [33].

Second, while we observed significant two-photon interference visibilities, the resulting prob-

ability distributions did not exhibit a conclusively quantum signature, as quantified by the wit-

ness defined in [16]. This was most likely due to the significant polarisation-dependent coupling

and loss in the circuit, leading to non-unitary evolution which failed to preserve the coherence of

the input quantum state. With a better understanding of the origins and mechanisms of these

effects, they could be exploited to engineer devices such as polarisation-dependent couplers. It

should be noted that these effects are certainly not inherent to the direct-write technique, as

for example demonstrated by [34].

Future research should also focus on realising decoherence in continuous-time walks. Many

physical, biological or chemical systems are strongly coupled to their environment and decoher-

ence has been suggested to be the driving factor behind phenomena such as environmentally-

assisted quantum transport [9]. While decoherence has been studied in discrete-time experi-

ments [14], techniques for controllably introducing it to inherently robust waveguide lattices

have yet to be demonstrated.

The emulation of classically intractable physics requires the scaling up to larger, more
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8.5. Discussion

elaborate waveguide structures, which is certainly feasible, as demonstrated by [23, 24, 25].

However, it will be tricky to address the individual modes in these systems as the fan-in we

demonstrate in our paper has its limitations. The theory will also have to catch up; unlike

for quantum computation, there are no known fault-tolerance or error-correction techniques for

quantum emulation in quantum walks.
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8.5. Discussion

Appendix

In the Heisenberg picture, a light field input into a waveguide in this chip is subject to the

coupled-oscillator Hamiltonian [16]

H =
6∑
i=1

βia
†
iai +

6∑
i,j=1

Ci,ja
†
iaj, (8.2)

where βi is the propagation constant in waveguide i and Ci,j is the coupling constant between

waveguides i and j. The system then evolves in time according the unitary operator U(t) =

e−iHt/~ and the creation operators a†i are subject to the Heisenberg equation of motion

∂a†i
∂z

=
n

c

∂a†i
∂t

= i
[
H, a†i

]
= iβa†i + i

6∑
j=1

Ci,ja
†
j, (8.3)

which has the solution

a†i (z) =
∑
j

(eizC)i,ja
†
j(0) =

∑
j

Ui,j(z)a†j(0), (8.4)

where C = {Ci,j} is the 6× 6 matrix of coupling constants with diagonal entries Ci,i = β, and

z is the propagation distance along the waveguide array. Note that this evolution is equivalent

to the continuous-time quantum walk formalism [15].

The interaction length z of the waveguides is chosen to match the desired run time t for the

emulation of the Hamiltonian. The overall response of the circuit as a 12-port beam-splitting

device is then contained in the unitary matrix U = eizC , and we can define a set of six output

creation operators b†i , with b†i = a†i (z) =
∑
j

Ui,ja
†
j for the input operators aj = aj(0).

The coupling Ci,j between two waveguides falls off exponentially with waveguide separation

ri,j [23], so to design an array of the type discussed in this paper, the number of waveguides,

their geometry, and their separations ri,j are chosen to reflect the properties of the Hamiltonian

under investigation. This determines the parameters βi and Ci,j. An interaction length z is

chosen according to the desired emulation time t.

To translate the theoretical design into a real experimental system, the geometry of the

circuit is analysed in a numerical electromagnetic design suite, in our case RSoft [35]. This

program uses finite-difference algorithms to find solutions to Maxwell’s equations in dielectrics

and can be used to optimise a set of physical parameters (core diameter and refractive index

contrast) which will approximate the desired evolution. This provides the link between the

Hamiltonian evolution of the quantum system under study, and the physical properties of the

experimental system. For our chip, simulation predicts two leading nearest-neighbour coupling

strengths of C24 = 0.963 mm−1 and C12 = 0.312 mm−1, reflecting the elliptical geometry. The

next-nearest neighbour and further coupling values are C14 = 0.050 mm−1, C16 = 0.044 mm−1,

C23 = 0.009 mm−1, C25 = 0.005 mm−1. The latter two are negligible: our model predicts that,
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8.5. Discussion

in the absence of the other waveguides, less than 2% of light input into one waveguide of either

of these pairs would couple to the other waveguide over the interaction length of the chip.

However, the next-nearest neighbour coupling C14 and even the next-next-nearest neighbour

coupling C16 are notably non-negligible, respectively leading to modeled values of 40% and

33% coupling between these waveguide pairs, in the absence of all other waveguides, over the

interaction length of the chip.

We now describe the two-photon evolution in the optical system. Two temporally indistin-

guishable input photons |Ψ〉 = a†ia
†
j |0〉, for i 6= j, give the joint detection probability Γik,l of

finding the state b†kb
†
l |0〉 in output modes k and l [16]:

Γik,l = 〈b†l b
†
kbkbl〉Ψ =

1

1 + δk,l
|Ui,kUj,l + Uj,kUi,l|2. (8.5)

The matrix Γi = {Γik,l} then describes the two-photon probability distributions in all combina-

tions of output modes. In contrast, two distinguishable photons will evolve independently and

obey the statistics of Bernoulli trials. The corresponding output probability distribution Γdk,l
takes the form,

Γdk,l =
1

1 + δk,l

(
|Ui,kUj,l|2 + |Ui,lUj,k|2

)
. (8.6)

In the case of photons and electro-magnetic fields, Γdk,l represents an intensity correlation matrix

Γdk,l = 〈IkIl〉. The components Γik,l and Γdk,l will differ by the factor 2 Re [(Ui,kUj,l)
∗(Ui,lUj,k)],

which encompasses the quantum nature of indistinguishable walkers.

To quantify the overlap fidelity between two probability distributions, we use [27],

S = (
∑
k,l

√
Γk,lΓ

p
k,l)

2/
∑
k,l

Γk,l
∑
k,l

Γpk,l. (8.7)

Mueller matrix

The Mueller-matrix array M describes the transfer properties of the circuit in terms of the

Stokes parameters S, which describe the polarisation state of an electromagnetic field [29]. The

component Mi,j is the 4× 4 Mueller matrix describing the coupling from input waveguide j to

output waveguide i. From the corresponding output Stokes parameter Si,j for the input state

|H〉j, the real-valued parameter |Ui,j|2 was calculated as the output transmission component in

the |H〉i subspace.

Table 8.1 shows the calculated Mueller-matrix array M of the quantum walk circuit. The

matrix not only allows us to determine the evolution matrix U in the |H〉 subspace, but also

quantifies the polarisation-dependent coupling and birefringence observed in the circuit, as seen

in Fig. 8.4.
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8.5. Discussion
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Conclusion and Outlook

I
n this thesis we present a variety of experiments linked by the use of quantum states of

light to encode and control quantum information, as well as for simulating and explor-

ing fundamental physics. In summary, we have demonstrated a technique for improving

multi-photon generation and proven its effectiveness in the betterment of photonic quantum

information processing. We have experimentally demonstrated a conclusive CHSH inequality

for temporal quantum correlations, opening up the prospect for these correlations to become

a resource in future quantum information tasks. Finally, we have studied photonic quantum

walks in both the discrete- and continuous-time regime. Most importantly, we use our discrete-

time quantum walk architecture as a platform for studying the exotic behaviour of topological

phases, thereby demonstrating its versatility for simulating interesting physical phenomenon.

We will now discuss the main results in finer detail and highlight future research opportunities

in these areas.

The production of large multi-photon states is a difficult, but necessary problem to overcome

for the progression of linear-optical quantum computation. Such a technology should create

multiple photons at a high brightness to combat dark-count rates of single-photon detectors;

produce each photon in a well defined spatio-temporal mode so they can be transported via

optical fiber; and ensure photons are generated at the same time with equivalent spectral prop-

erties for indistinguishable interactions in a photonic quantum computer. At the time of writing

this thesis there is no photon source which fulfils all of these criteria and with a competitive

advantage over the current state-of-the art: spontaneous parametric downconversion (SPDC).

Although some research groups have used SPDC for experiments with photon numbers up

to 8 [1], there is a fundamental flaw with this technology. Higher-order photon emissions lead

to an ever increasing noise contribution for a desired photon number state. To combat this

problem in Chapter 3 we demonstrated a simple method to increase the photon number purity

of SPDC without decreasing source brightness using only linear optics elements and passive

optical alignment. Our temporally multiplexed SPDC source has a reduced relative number of

higher-order photon emissions, leading to an increased photon number purity. The knock-on

effect is an increased visibility in measured non-classical interference as well as the fidelity of

photonic quantum logic gates.

This technique on its own however, is limited by laser repetition rates and detector speeds.

Another problem for higher photon-number experiments is the inherent dark count rates of

single-photon detectors. The probability of producing n pairs of photons from SPDC goes as

(pulse power)n, therefore if each laser pulse is too low in power the detector dark-count rates
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can start to dominate, therefore reducing the signal-to-noise ratio of the source.

Using high efficiency (> 98%), number resolving detectors based on superconducting tran-

sition edge sensors [2, 3] will alleviate the problem of higher-order events, but does not solve it

due to other optical losses. Other techniques to increase photon-number purity include spatial-

multiplexing with fast optical switching [4, 5]. With these methods one can improve photon

number purity. In my opinion a vital question is: given a combination of the best currently

available source and detector technologies can we reach photon-number purities within fault

tolerant thresholds for photonic quantum computation?

In Chapter 4 we experimentally investigated quantum correlations in the temporal domain.

Our work verifies the result that all quantum states are entangled in time, pure or mixed.

This statement may first appear surprising to the reader, but upon closer inspection can be

understood as a direct consequence of the effect that projective measurements have on quantum

systems. A projective measurement at time ti forces the quantum system into a particular state

such that the probability distribution for a measurement made at time ti+1 is necessarily affected

by the previous measurement choice.

This result is good news for applications employing the use of temporal entanglement:

since the correlations are state independent, one need only calibrate the measurement devices

precisely in order to measure strong temporal correlations and not worry about the fidelity

of the quantum state itself. Temporal quantum correlations could provide a new resource

for quantum information tasks, in fact, quantum communication protocols have already been

proposed [6].

From a more fundamental perspective our work adds to the plethora of experiments that

demonstrate a clear violation of a classical worldview based on the notions of macroscopic

realism and non-invasive measurability [7]. However, as the system under investigation in our

case is microscopic, the question of how these concepts extend into the truly macroscopic regime

is still open. This problem was originally posed by Leggett and Garg [7], and has since been

the subject of experimental investigation in [8, 9, 10], but again, only in the microscopic regime

where one expects to find a violation of macroscopic realism and non-invasiveness. In our case

an open question is: can the restriction of non-invasiveness be relaxed whilst still maintaining

a violation of temporal Bell-type inequalities with a quantum system?

The main results in Part II of this thesis were the physical implementations of single-

and multi-photon quantum walks in discrete- and continuous-time regimes respectively. Our

experiments, though limited in the number of steps or lattice positions of the walker, open up

a wide variety of future research directions.

In Chapter 6 we presented the first demonstration of a single-photon quantum walk in space.

The main advantages of our system are the ability to tune the amount of decoherence as well

as having access to every lattice position at every time step of the walk. In particular, in

the context of quantum computing, it has been shown that a small amount of decoherence in

the quantum walk is desirable for some quantum computing algorithms [11], and for quantum
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search algorithms, addressability of individual lattice sites is a prerequisite for any physical

implementation [12].

At the end of this chapter we discussed the potential to implement multi-photon quantum

walks with the calcite beam-displacer setup. Multi-photon quantum walks offer the opportunity

to study unique entanglement dynamics [13], as well as the simulation of single-walker dynamics

in higher dimensions [14]. In particular, search algorithms based quantum-walks on an n-

dimensional hypercubes have speedups close to the best known quantum algorithms [15, 16].

As a tool for quantum computation, Rohde et al. have recently shown that the multi-

photon quantum walk architecture complemented by measurement and feed-forward is for-

mally equivalent to the Knill, Laflamme and Milburn scheme [17] for scalable and universal

linear-optics quantum-computing [14]. The same authors show that quantum walks with mul-

tiple walkers without measurement feed-forward are also formally equivalent to the so-called

BosonSampling problem posed by Aaronson and Arkhipov [18].

Given a known linear-optical network, that is, the unitary evolution that describes the net-

work, and multiple indistinguishable photon inputs, determining the frequencies of coincident

photon events at the output (dubbed BosonSampling) is strongly believed to be intractable

using a classical computer, as the complexity of the optical network and photon numbers in-

crease [18]. The reason being that the number of potential paths a collection of bosons can

take through such a network scales exponentially with the network size. Although not univer-

sal for quantum computing, a physical demonstration of BosonSampling is of fundamental

importance to the theory of computational complexity [18]. If it were the case that a real phys-

ical system could not sample the boson distribution more efficiently than a classical computer

could predict it, the implications for computational complexity would be profound [18]. A full

physical proof that BosonSampling is efficient, if performed in a physical architecture, would

require one to sample from a number of different quantum walk evolutions. As we can address

individual lattice sites in our system, changing the evolution is a matter of altering wave plate

angles at different locations on the walk lattice. However, such an experiment comes with its

own technicalities, least not the generation of large indistinguishable multi-photon states (see

above)1.

However, where the versatility of our quantum walk system is its superiority, scalability is its

inferiority. Our method based on calcite beam displacers is limited by the unavoidable optical

phase shifts introduced in each optical mode by manufacturing imperfections, as well as the

physical dimensions of the beam-displacers themselves. We have demonstrated a maximum of

8 steps so far [19], compared to discrete-time quantum walks based on classical interferometry

in optical fibre-loops which have demonstrated up to 28 steps on a 1D lattice [20] and 12 steps,

or equivalently 169 positions, on a 2D lattice [21]. However, given the exponential drop-off

in signal strength in these alternative schemes, it is difficult to see how they could find a

solution for implementing multiple walkers. Other implementations of multi-photon discrete-

time quantum walks have been demonstrated in laser written waveguides [22], which, given the

1During the final submission of this thesis the author published “Experimental BosonSampling in a tunable
circuit”, Accepted to Science, e-print arXiv:1212.2234 (2012)
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inherent stability of these systems, could be a more appropriate choice to implement large scale

multi-photon quantum walks.

In Chapter 7 we used the same beam-displacer network described in Chapter 6 to investi-

gate the topological properties of discrete-time quantum walks. Topological effects have been

observed in many physical materials [23, 24] and theoretically predicted to exist in many more

systems ranging from condensed matter to high-energy physics [25, 26, 27]. The universality of

topological behaviour make it interesting to study from a fundamental physics perspective as

well as for technological applications in the development of exotic states of matter [28]. However,

the topological properties of real materials are difficult to manipulate and directly observing

topologically protected bound-states is technically challenging. In our work we demonstrate

an unprecedented control over the topological properties of a quantum system. We are able to

both manipulate topological parameters, or invariants, of quantum walks at will, and directly

image the wave function of bound states between topologically distinct regions. In doing so,

we conclusively demonstrate the topological protection of bound-states identical to those in the

long predicted but never observed, Su-Schrieffer-Heeger model of polyacetylene [29], as well as

discovering an entirely new topological phenomenon: a pair of topologically protected bound

states unique to periodically driven systems. Our work adds to the growing number of quantum

walk experiments falling under ‘quantum simulation or emulation’ [30, 22], and highlights the

versatility of these systems as quantum simulators.

In Chapter 8 we presented our demonstration of a two-photon quantum walk on an eliptical

graph. This work is the first quantum walk in a three-dimensional waveguide structure with

genuine non-classical photonic inputs. Studying quantum walks in two or more dimensions

allows the exploration of interesting graphs [31] that are not possible in the one-dimensional case

without the addition of multiple-walkers [14]. In particular, quantum walks on two-dimensional

graphs are a powerful tool in searching for marked nodes, giving information not only of their

position, but also of the local structure [12]. Furthermore, our work presents the first multi-

walker quantum walk with periodic boundary conditions, a system that has been theoretically

predicted to exhibit non-trivial time-dependent entanglement dynamics for a low number of

walk lattice positions [32].

Our work complements other multi-photon continuous-time quantum walks in waveguide

structures [33], but more importantly it contributes a significant step towards realising com-

plex Hamiltonians using evanescently coupled waveguides for use in quantum emulation. With

laser-written waveguide technology achieving a varied waveguide coupling is a matter of al-

tering refractive index profiles of individual waveguides as well as their relative positions to

one another [34]. By this method (see Section 5.3) others have simulated a variety of inter-

esting physical phenomenon that are otherwise difficult to observe including Zitterberwegung

(trembling motion) [35], Klein tunnelling [36] and Anderson localisation [37].

A particularly exciting prospect for the future is the simulation of coherent biological effects

using the quantum walk formalism, which has been studied extensively by Mohseni et al. [38].

As their study suggests, an emulation of coherent quantum effects in the Fenna-Matthews-Olson

138



(FMO) protein complex could be achieved by a judicious choice of coupling parameters between

lattice positions in a continuous-time quantum walk. It is likely that such an experiment is

within reach of current laser-written waveguide capabilities. Most interestingly, they discover

that energy transport around the FMO protein is enhanced by decoherence, in a process known

as environmentally-assisted quantum transport [39]. However, central to such an investigation

is the ability to experimentally tune the amount of decoherence for a continuous-time quantum

walk, which is currently an open problem in experiments with laser-written waveguides.

In conclusion, this thesis contributes a significant development to the progression of pho-

tonic quantum information and simulation science. As well as improving upon existing quantum

optics techniques, it expands the physical toolbox used for coherent control of photonic quan-

tum states. In doing so, this work moves photonics closer to realising useful applications in

engineered quantum systems.
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