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Abstract

Higher-order maps account for the most general transformations in quantum mechanics—they trans-

form input quantum maps to output quantum maps. In this thesis, I focus on the application of such

higher-order maps representing two important processes: (1) a particular type of non-Markovian

quantum dynamics, and (2) indefinite causal order.

First, I will introduce our work on the non-Markovian evolution of quantum states. Such a

situation occurs when the past system-environment interaction leads the environment to memorize

the information about the system. The measure of the non-Markovianity is given by the temporal

correlation among the operations on the system. One way to estimate such correlation is to employ

a full tomography of the process matrix, which is computationally intractable. Instead, we utilize

machine learning algorithms without using tomographically complete measurement, to estimate the

measure of non-Markovianity. We apply our model to a dataset obtained from an optical experiment

and show that we are able to predict the measure of non-Markovianity with 90% accuracy.

I then introduce various aspects of indefinite causal order. Ordinary experience points only to a

definite causal structure, but quantum mechanics admits a more general causal structure that allows for

the superposition of different causal orders. That means that the statements, "event A is in the causal

past of event B", and "event B is in the causal past of event A" can both be true. The quantum switch

can physically realise such an indefinite causal structure where a control quantum system controls

the order of operations acting on a target quantum system. Superposition in the control leads to the

superposition of the order. We experimentally realise a quantum switch with the control qubit being the

polarisation of light and the target qubit being the transverse spatial mode of light. We first verify our

quantum switch by measuring a ‘causal witness’. We then demonstrate an advantage of the quantum

switch for classical communication.

Finally, I present our work on classical communication through the most general quantum causal

structures, represented by the process matrix. We formulate different classical capacities of a bi-

partite process matrix. We also study one-way and bidirectional communication protocols through

such a process and establish the relevant communication bounds. These enable further analyses of

higher-order maps that take advantage of the full suite of processes that quantum mechanics allows.
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Chapter 1

Introduction

The most general quantum transformation maps an input quantum operation to an output quantum

operation. My research is focused on two specific applications of such higher-order maps: a non-

Markovian quantum evolution and indefinite causal order.

We observe a non-Markovian dynamics when interaction between the system and the environment

results in an environment retaining the past information about the system, i.e., a quantum evolution

with memory. Conventionally, a non-Markovian evolution is characterized by dynamical maps. Such

characterisation poses several challenges. For example, an evolution with an initial system-environment

correlation results in dynamical maps which lack operational interpretations; we are forced to relax

positivity, linearity, or consistency of the dynamical maps. In contrast, since the higher-order map

transforms any input completely positive (CP) map to a valid output CP map, it gives a sound

operational representation of non-Markovian processes. In a non-Markovian dynamics, we encode

all information about the system-environment correlations in the higher-order process. Any local

operation performed on the system is an input of the process.

The higher-order map also helps to represent a process exhibiting indefinite causal order. The

notion of a fixed causal order is predominant in our daily experience; an event A either occurs before or

after an event B. Surprisingly, quantum mechanics allows superposition of different causal orders—the

event A can both be in the causal past and causal future of event B. Such exotic causal structures have

relevance in quantum gravity as well as applications in several computation and information-processing

tasks. A quantum switch is a physically realisable example of a device that demonstrates indefinite

causal order. In a quantum switch, the order of operations acting on a target quantum system is

coherently controlled by a control quantum system. Superposition in the control leads to superposition

in the causal order.

Although the quantum switch presents interesting applications in various information-processing

tasks, it cannot violate the causal inequality—an inequality for causal structures analogue to Bell’s

inequality. Interestingly, certain indefinitely ordered processes violate the causal inequality. Although

the physical implementation of such processes is not known yet, it is interesting to explore different

properties of such general indefinitely ordered processes.
1



2 CHAPTER 1. INTRODUCTION

Chapter summary
My thesis is arranged as follows: in Chapter 2, I first introduce elementary quantum objects (states,

transformation, and measurement). Then I introduce properties of the higher-order processes. Next

I introduce both classical and quantum information theoretic concepts. Finally, I present two exper-

imental platforms for quantum information processing: polarisation and transverse spatial mode of

light.

Having developed the preliminary concepts in the Chapter 2, Chapter 3 discusses my experiment

on a non-Markovian process. Although a higher-order map successfully represents a non-Markovian

process, a full characterisation of such dynamics requires tomography of the higher-order map, which

is both computationally and experimentally difficult. We propose a more efficient solution. We

employ machine learning models to estimate the amount of non-Markovianity—as quantified by an

information-theoretic measure—with tomographically incomplete measurement. We test our model on

a quantum optical experiment, and we are able to predict the non-Markovianity measure with 90%

accuracy. Our experiment paves the way for efficient detection of non-Markovian noise appearing in

large-scale quantum computers.

In Chapter 4, I present our work on the experimental implementation of the quantum switch.

We realise a photonic quantum switch, where polarisation coherently controls the order of two

operations on the transverse spatial mode of the photons. Our setup avoids the limitations of earlier

implementations: the operations cannot be distinguished by spatial or temporal position. We verify the

‘indefiniteness’ in the causal order in our quantum switch by measuring a causal witness. We show that

our quantum switch has no definite causal order, by constructing a causal witness and measuring its

value to be 18 standard deviations beyond the definite-order bound.

In Chapter 5, I present an information-theoretic advantage of the quantum switch. Classically,

no information can be transmitted through a depolarising—that is a completely noisy—channel. We

show that by combining a depolarising channel with another channel in an indefinite causal order—

that is, when there is superposition of the order that these two channels were applied—it becomes

possible to transmit significant information. We consider two limiting cases. When both channels

are fully-depolarising, the ideal limit is communication of 0.049 bits; experimentally we achieve

(3.4±0.2)×10−2 bits. When one channel is fully-depolarising, and the other is a known unitary, the

ideal limit is communication of 1 bit. We experimentally achieve 0.64±0.02 bits. Our results offer

intriguing possibilities for future communication strategies beyond conventional quantum Shannon

theory.

In Chapter 6, I present our theoretical work on the most general causal structures. We formulate

different classical capacities for a bi-partite quantum process. We find that a one-way communication

protocol through an arbitrary process cannot outperform a causally separable process, i.e., we can send

at most one bit per qubit. Next, we study bi-directional communication through a causally separable

process. Our result shows, a bi-directional protocol cannot exceed the limit of one way communication

protocol. Finally, we generalise this result to multi-party broadcast communication protocol through a

definite ordered process.
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Finally, in Chapter 7, I conclude with a summary and outlook of the results presented in this thesis.





Chapter 2

Conceptual Background

Any information processing task revolves around a suitable encoding-decoding model [1]. In quantum

physics, information is encoded in a quantum state, and extracted through a measurement operation.

The transformation between input and output quantum states is governed by a quantum operation [2].

The central aspect of my research is focused beyond this traditional description. Specifically, my

work involves the most general types of transformations between the elementary quantum operations

formalised by quantum supermaps [3–6] or process-matrix [7]. My work is based on two specific

applications of such higher order quantum processes— firstly, representation of a non-Markovian

quantum process, i.e. a quantum process with memory [5, 8–12], and a more striking scenario of a

quantum process without a definite causal structure— indefinite causal order [4, 5, 7, 13–15].

Before delving deeper into application of the process-matrix, it is important to develop the concep-

tual tools. Hence I dedicate this chapter to introduce the basic building blocks of quantum information.

I first explain the conventional framework of the quantum mechanics, then I introduce the process

formalism, next, I will introduce some important information-theoretic measures, and finally, I will

shed light—pardon the pun—on optical implementation of the elementary quantum operations. I am

going to leave the concept of exotic quantum processes to subsequent chapters.

2.1 Elementary objects in Quantum Mechanics

2.1.1 Quantum state

The notion of state is perhaps the most fundamental concept in quantum physics. The state incorporates

the ‘complete’ description of a quantum physical system, containing all retrievable information

about the system. The physical embodiment of states depend on the specific quantum systems in

consideration. For instance, in a Harmonic oscillator, the quantum state is given by the different energy

levels [16]; on the other hand in quantum optics, the state can be described by the polarisation or

the spatial mode or temporal mode [17]. A quantum state can be either a pure state, or it could be a

statistical ensemble of different pure states, referred to as a mixed state. Mathematically, a pure state is
5
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described by a vector |ψ〉 in a Hilbert space H with a unit norm,

‖|ψ〉‖=
√
〈ψ|ψ〉=1 (2.1)

Here, 〈.|.〉 represents the inner-product. Each vector can be expanded in terms of an orthonormal basis

(ONB) {|i〉} as

|ψ〉=
d−1

∑
i=0

αi |i〉 (2.2)

Here {|i〉} being an ONB, 〈i| j〉=δi j, d is the dimension of the Hilbert space H, the coefficient of the

basis vectors, in general, belong to the complex field, αi∈C. The unit-norm condition in Eq. (2.1)

implies ∑i |αi|2=1. In matrix representation, we express the ket-vectors as column matrices. As

shown in Eq. (2.2), a striking property of a quantum state is that it can be in a linear combination of

several pure states, also known as a superposition state. The superposition of states, which brings

indefiniteness from a very fundamental level and is without a classical analogue, has acquired a

paramount attraction—both theoretically and experimentally—since the early inception of the quantum

mechanics [18].

In practice, no state is completely pure, so we need a a description for mixed states. A quantum

system is in a mixed state when the state fluctuates according to an underlying probability distribution.

Mathematically, it is represented by a density operator ρ∈L(HA), here L(H) is the set of all linear

bounded operators on the Hilbert space H. As an example, if a quantum system fluctuates among the

states {|ψi〉∈H}, with associated probabilities pi
(
∑i pi=1

)
, then the resulting mixed state ρ∈L(H)

is given by the convex combination ρ=∑i pi |ψi〉〈ψi|. Note that, density operator representation of a

pure state |ψ1〉 is simply the outer product, ρ= |ψ1〉〈ψ1|, this can be seen as a special case when the

underlying distribution is concentrated to only one pure state, i.e., it has only one nonzero coefficient p.

The density operator ρ is Hermitian (ρ†=ρ) and positive (ρ≥0). The unit norm of the ensemble pure

states ensures Tr(ρ)=1. The above conditions make the eigenvalues of ρ real, positive and they sum up

to one, thus density operators generalise classical probability distributions. A density operator admits

an operator basis decomposition. For a density operator that describes a qubit—two-dimensional

quantum systems—the decomposition is as follows:

ρ =
1
2

(
1+

3

∑
i=1

niσi

)
. (2.3)

With {ni∈R} being real numbers and {σi} being the Pauli operators 1 described as

σ1=

(
0 1

1 0

)
,σ2=

(
0 −i

i 0

)
,σ3=

(
1 0

0 −1

)
. (2.4)

Geometrically, one can represent the qubits using a three-dimensional unit sphere, also known as

the ‘Bloch sphere’. As shown in Fig. 2.1, on a Bloch sphere, the north and south pole of the sphere
1Note that, different conventional notations exist for Pauli operators: σ1≡σx≡X , σ2≡σy≡Y , and σ3≡σz≡Z. In the

subsequent chapters, I will explicitly mention which notation I am going to use.
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represents the eigenvectors of σ3 — |0〉 and |1〉, also known as the computational basis. The equatorial

planes contains the eigenvectors of σ1 and σ2. The pure states are represented by points that lie on

the surface of the sphere whereas, the mixed states are represented by points that lie inside, with

the centre representing the maximally mixed state 1/2. Thus we can infer ‘purity’ of a state by its

radius |~n|=
√

∑i n2
i , or by evaluating Tr[ρ2]=(1+ |~n|2)/2. Note that, for pure states, |~n|=1, hence

Tr[ρ2]=Tr[ρ]=1, whereas for the maximally mixed state, |~n|=0, and Tr[ρ2]=1/2.

x y

z

Figure 2.1: Bloch sphere representation of a qubit. The axes represent eigen vectors of different Pauli
matrices: z for σ1, y for σ2, and z for σ3. The pure states lie on the surface of the sphere, with polar
opposite points are orthogonal states. For example, the green circles represent the states |ψ〉 and

∣∣ψ⊥〉
where

〈
ψ
∣∣ψ⊥〉=0. The mixed states lie inside the sphere, with the maximally mixed state (the red

circle) is at the centre.

2.1.2 Joint quantum state

So far I have discussed the single quantum system. However, it is possible to have a large number of

quantum systems having a collective state representation referred to as a joint state. For the sake of

simplicity, I am considering only two quantum systems belonging to Hilbert spaces HA and HB with

dimesnions dA and dB respectively. This joint state, also called a bipartite state, in this case defined

over the product Hilbert space H≡HA⊗HB, of dimension dA.dB. To represent a pure joint state, first

I introduce the ONB of the composite Hilbert space. If {|i〉} and {| j〉} are the ONBs of the Hilbert

spaces HA and HB respectively, the product Hilbert space H admits the ONB {|i〉⊗| j〉}. Thus a pure

state |ψ〉AB can be written as

|ψ〉AB =
dA−1

∑
i=1

dB−1

∑
j=1

αi j |i〉A⊗| j〉B . (2.5)

Here αi j∈C, and ∑i, j |αi j|2=1.
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Schmidt decomposition and state purification

The bipartite state mentioned in Eq. (2.5) has a useful decomposition. First we define a matrix X with

elements Xi j=αi j, and rank r. Performing a singular value decomposition on the matrix X reveals that

there exist strictly positive Schmidt coefficients {λk > 0}r
k=1, ONBs {|ek〉∈HA} and {| fk〉∈HB} such

that

|ψ〉AB =
r

∑
k=1

√
λk |ek〉A⊗| fk〉 . (2.6)

The rank r is also known as Schmidt rank. One important aspect of Schmidt decomposition is that it

gives an alternative physical meaning of a single system mixed state. A mixed state can always be

interpreted as a joint pure state with an auxiliary quantum system which is later discarded, Fig. 2.2(a).

Mathematically,

for every mixed state ρA=
r

∑
k=1

pk |ek〉〈ek|

there exists a pure state |ψ〉AR=
r

∑
k=1

√
p k |ek〉A⊗|ek〉R . (2.7)

Here, the bar, |ek〉, represents the complex conjugate.This can be easily verified by evaluating the

density operator |ψ〉〈ψ|AR and then performing a partial trace on R. Physically, a partial trace is

equivalent to discarding the auxiliary system.

Separable and entangled state

A bipartite state is a product state when it is simply a tensor product of two pure states. For in-

stance, two uncorrelated states |τ〉∈HA and |φ〉∈HB results in the bipartite product state in H is

|ψ〉AB= |τ〉A⊗|φ〉B. Physically, a product state implies a complete lack of correlation between two

quantum systems.

The two quantum systems can also be classically correlated. This happens when the systems’ state

are governed by a joint probability distribution. If the bipartite system acquires a state |τi〉⊗
∣∣φ j
〉

according to a joint probability distribution p(i, j), then the resulting correlated mixed state is

ρAB = ∑
i, j

p(i, j) |τi〉〈τi|A⊗
∣∣φ j
〉〈

φ j
∣∣
B . (2.8)

Clearly, the maximum classical correlation occurs when p(i, j)=p(i)δi j, i.e. at a given instance the

state of the system is confined to |τi〉⊗|φi〉 with probability p(i) — ρ=∑i p(i) |τi〉〈τi|⊗|φi〉〈φi|. The

states admitting the form in Eq. (2.8) are called separable states.

Any state that cannot be written in the above mentioned decomposition, is an entangled state.

Entanglement has been a pivotal resource in many computation and information processing tasks

[19–22]. The phenomena of entanglement is unique to the quantum physics: the measurement

outcomes of two space-like separated entangled systems show correlations which cannot be explained
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by classical physics. This non-local behaviour, as famously described by Einstein’s ‘spooky action at a

distance’ was challenged by Einstein and coauthors, in the EPR paper [23]. The authors proposed such a

state, in the end, can always be described by underlying hidden variables, indicating that the formulation

of quantum mechanics was incomplete. In reply, based on measured statistics, Bell proposed an

inequality that cannot be violated under the assumption of local hidden variable theory [24, 25]. Bell’s

inequality was first experimentally violated by Aspect et. al. [26]. The experiment ensured that

entanglement is a genuine non-classical property. Several follow-up experiments have been conducted

since then and finally Hensen et al. [27] achieved a loop-hole free violation of Bell’s inequality. A

pure state is entangled if and only if its Schmidt rank is strictly greater than one. An important class of

entangled states are the maximally entangled states. One such maximally entangles state is |Φ〉AB with

both Hilbert spaces having an equal dimesnion d and sharing an ONB {|i〉}.

|Φ〉AB=
1√
d

d−1

∑
i=0
|i〉A⊗|i〉B . (2.9)

Note that, the above state is already in the Schmidt form with the Schmidt rank being the dimension of

the Hilbert space and all the Schmidt coefficients being 1/
√

d . This is indeed a prerequisite for a state

to be a maximally entangled state.

2.1.3 Quantum Channel

The state of a dynamic quantum system undergoes evolution through time. In case of a closed system—

free from environemental interaction—the evolution is noiseless, and is governed by the famous

Schrödinger equation [28]

i}
∂

∂ t
|ψ(t)〉= H |ψ(t)〉 , (2.10)

with H being the evolution Hamiltonian, }=h/2π where h is the Planck’s constant. Solution of

this partial differential equation states that a noiseless quantum state evolution is given by a unitary

transformation:

|ψ(t)〉=U(t) |ψ(0)〉 . (2.11)

Here U(t)=e−iHt/} is an exponential of a Hamiltonian operator H, hence a unitary transformation. In

general, we drop the time parameter t. In density operator representation, for an input density operator

ρ , the output density operator ρout is

ρout =UρU†. (2.12)

A unitary transformation is perfectly reversible, hence no information about the system is lost.

However, in practice no system is isolated, resulting in leakage of information about the system to

the environment. Thus while the collective system-environment joint state still undergoes a noiseless

evolution, our lack of knowledge about the environment renders the net evolution of the system noisy

and irreversible. Such general class of system evolution can be modeled by a quantum channel.
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A quantum channel is a linear, completely positive, and trace-preserving (CPTP) map transforming

an input quantum state to an output quantum state. The map is positive because it maps any input

quantum state to a valid output quantum state. A quantum channel is completely positive (CP) because

any arbitrary extension of the input quantum state to an auxiliary quantum system still produces a

valid output quantum state. The trace-preserving condition indicates the trace of the output state is

equal to the trace of the input; physically it means that the output quantum state is not conditioned on a

measurement outcome. Furthermore, when acted on a convex mixture of quantum states, the evolution

ensures that the output state is the same convex mixture of the individual inputs, i.e. convex linearity is

respected. We represent a quantum channel N:XI→XO by a map that transforms any density operators

in XI≡L(HXI) to a density operator in XO≡L(HXO).

Kraus decomposition: The action of a CPTP map on an input state can be understood through

Kraus decomposition [2]. The Kraus representation of a map involves a set of linear bounded operators

{Ki∈AI⊗AO}r
i=1, also known as Kraus operators such that for an input state ρ∈AI , the output state

ρout∈AO is

ρout =N(ρ) =
r

∑
i=1

KiρK†
i . (2.13)

The trace-preserving condition of the channel implies ∑i K†
i Ki=1AI . The Kraus operators could be

interpreted as various errors affecting the quantum state. However, the Kraus decomposition is not

unique, and different decomposition are related by an isometry. Specifically, given {Ki}r
i=1 is a set of

Kraus operators for the channel N, then an r′×r isometry V , with elements {Vi, j : 1≤ i≤ r′,1≤ j≤ r}
satisfying ∑

r′
k=1 V̄k,i.Vk, j=δi j, defines a new set of Kraus operators {K′i}r′

i=1 given by

K′i =
r′

∑
i=1

r

∑
j=1

Vi, jK j (2.14)

Stinespring dilation

All quantum evolution are unitary. However, as I have mentioned before, it is our lack of knowledge of

the surrounding environment that requires us to formulate general quantum channels focusing solely

on the evolving quantum system. Stinespring dilation theorem [29]—often referred to as the Church

of the larger Hilbert space—establishes a relation between a quantum channel and its unitary extension

with the help of an auxiliary environmental state. Stinespring dilation, Fig. 2.2(b), states that for any

quantum channel N:AI→AO, there exists an isometry V : AI→AOEO, with EO being the output of the

environmental state, such that for all input state ρ∈HAI ,

N(ρ) = TrEO(V ρV †). (2.15)

One can relate the Kraus operators {Ki} of a channel and the corresponding stinespring isometry V as

V = ∑
i

Ki⊗|i−1〉 . (2.16)
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Thus Stinespring’s theorem pictures the evolution of every quantum system as an interaction with its en-

vironment, followed by discarding the environment. We can always extend an isometry V : AI→AOEO,

to a unitary U : AIEI→AOEO acting on the inputs of the system AI and a dummy environmental state

|0〉〈0|∈EI . Thus Eq. (2.15) can be rewritten as

N(ρ) = TrEO(V ρV †) = TrEO [U(ρAI⊗|0〉〈0|EI
)U†]. (2.17)

2.1.4 Quantum measurement

In the previous section I discussed how information about a quantum object is encoded in its state. To

complete the information processing task we need to extract the encoded information. Thus realising

a suitable measurement device is crucial. The measurement outcome of the quantum mechanics is

inherently probabilistic. Any sequence of experimental outcome is governed by a specific probability

depending on the input quantum state and the measurement device. This makes the quantum theory a

framework for estimating probabilities of the measurement outcomes. To capture the statistical essence

of the measurement procedure, first we need to develop the concept of observables, also known as

effects [2]. An observable is a physical quantity such as position, momentum, polarisation of light, or

orbital angular momentum. Mathematically they can be modelled by a self-adjoint operator. For a

finite-dimensional case, we represent an observable with a Hermitian matrix. Given an input state ρ ,

the expectation value of observing A is given by

〈A〉ρ = Tr(Aρ). (2.18)

The probabilistic nature of quantum mechanics results in a non-deterministic and irreversible evolution

of states. Precisely, given an input state ρ , the measurement of an observable A collapses the state

into one of its eigenstates |ψa〉 with probability |〈ψa|ρ|ψa〉|2 and the measurement outcome is the

corresponding eigenvalue a.

Complementarity and uncertainty principle

Unlike in classical measurement, not all quantum mechanical observables can be measured simul-

taneously. A pair of observables that cannot be measured simultaneously is called complementary

observables, for example position and momentum, polarisation along different axes and so on. Two

observables, A and B, are simultaneously measurable only when they commute, [A,B]=(AB−BA)=0.

A general non-commuting pair of observables respects the following operator inequality:

〈∆A〉〈∆B〉 ≥ 1
2
|〈[A,B]〉|. (2.19)

Here, 〈∆A〉ρ=
√
〈A2〉ρ−〈A〉2ρ represents the variance of the observable A given an input state ρ . As

the inequality in Eq. (2.19) holds for any input state, we have dropped the subscripts ρ . An important
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example involves the position (x) and momentum (px) operators. They satisfy the commutation relation

[x, px]=i}. Writing Eq. (2.19) for x and p, we get the famous Heisenberg uncertainty relation [30],

〈∆x〉〈∆px〉 ≥
}
2
. (2.20)

Positive Operator Valued Measure (POVM)

To infer complete statistical knowledge of an input state we need to make a complete set of measurements—

as in a Positive Operator Valued Measure (POVM). A POVM represents a collection of operators {Am},
we call each element Am in the set a POVM-element. The index m denotes the specific measurement

outcome. For an input state, the probability of obtaining m is given by the expectation value of the

corresponding POVM element Am,

p(m)=〈Am〉ρ=Tr(Amρ). (2.21)

Eq. (2.21) is also known as Born’s rule. As 〈Am〉ρ represents a probability — 0≤Tr(Amρ)≤1, any

POVM-element Am must satisfy the operator inequality ≤Am≤1, with , and 1 representing the null

and identity operators respectively. The sum of all observables denotes a deterministic outcome, i.e.,

an outcome with probability one, and hence we have a ‘completeness’ relation,

∑
m

Am=1. (2.22)

The completeness relation is owing to the fact the probabilities sum up to one. Each POVM-element Am

is associated with a measurement operator Mm such that Am=M†
mMm. This factorisation is not unique

and the relationship between the measurement operator and the observable can be parameterized by

a unitary Um as follows, Mm=Um
√

Am . Since, a unitary is a deterministic transformation, it does

not have any influence on the p(m). Hence, without loss of generality, one can assume a minimal

measurement Mm=
√

Am . We can perform either a selective measurement (where a specific outcome

is read out) or a non-selective measurement (measurement is performed without reading the outcome)

to get post measurement states ρs and ρns respectively. For a given input ρ and measurement operator

Mm, the post-measurement states are

ρs =
MmρM†

m
p(m)

and ρns = ∑
m

MmρM†
m. (2.23)

A special class of measurement operator is called a Projection valued measure (PVM) which is

represented by a set of orthogonal projectors {Pm}, the orthogonality condition implies,

PmPm′=δmm′Pm. (2.24)

The completeness relation ensures ∑m Pm=1. A simple example of PVM is measurement in a specific

ONB {|m〉}. The measurement operators in such scenario are simply the outer-product of the basis

states: Pm = |m〉〈m|.
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Naimark’s dilation

Naimark’s dilation theorem gives a physical interpretation of POVM and establishes a relationship

with PVM. The key ingredients are an isometry that takes a quantum system as an input and a joint

state (the evolved quantum system and an auxiliary state) as output. Naimark’s theorem states that

every POVM can be effectively realised by the process of a projective measurement on the auxiliary

state following the isometric evolution, Fig. 2.2(c). Specifically, for every POVM-element Am, there

exists an isometry V such that

Am =V (1⊗|m〉〈m|)V †, for all m. (2.25)

The isometry can be expressed in terms of the minimal measurement operator
√

Am as

V = ∑
m

√
Am ⊗|m〉 . (2.26)

(a) (b) (c)

Xo
Xo

XI

XI

Xo Xo

XIXI

Xo Xo

Figure 2.2: Three types of dilations. (a) Purification of state: any mixed state ρ can be purified to a
pure joint state |ψ〉. We get back the mixed state by tracing out (shown by the inverted ground) the
auxiliary system, see Eq. (2.7). (b) Stinespring dilation: any noisy channel N can be extended to a
joint unitary UN followed by tracing out the auxiliary system, see Eq. (2.17). (c) Naimark’s dilation:
any POVM element Am can be dilated to an isometric evolution V and a projector Pm= |m〉〈m| on on
the auxiliary system, see Eqs. (2.25), and (2.26).

Measurement as complete positive (CP) maps

If we compare the Kraus decomposition of a channel in Eq. (2.13) with the post-measurement state

ρns in Eq. (2.23) and observe that the completeness relationship in Eq. (2.22) suggests ∑m M†
mMm=1,

we come to the conclusion that a non-selective measurement scheme is in fact a quantum channel

(CPTP) with the measurement operators {Mm} being Kraus operators. This observation enables us to a

associate a map Mm with each POVM-element Am that gives the probability of observing the outcome

m given an input state ρ ,

Mm(ρ) = Tr(MmρM†
m) = Tr(Amρ). (2.27)

The map Mm is a completely positive map (CP). However it is not trace preserving, as M†
mMm 6=1.

The completeness relationship ensures that the sum of all such maps is a CPTP map, with with the
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combination of all outputs representing an event of unit probability i.e.

∑
m
Mm(ρ)=∑

m
Tr(Amρ)=Tr

[(
∑
m

Am

)
ρ

]
=Tr(ρ)=1. (2.28)

As this CP map gives out a probability, we say that they have a trivial output, with the dimension

of the output Hilbert space dO=1.

It is worth mentioning, that the notion of POVMs could be further generalised to quantum in-

struments. The subtle difference is that a quantum instrument gives more freedom in choosing the

post-measurement state. For example, we can simply discard the post-measurement state and replace

with an arbitrary state, the corresponding CP map is given by Mm(ρ)=σm Tr(Amρ). Note that sum

of all such CP maps again produces a CPTP map, M(ρ)=∑mMm(ρ)=∑m σm Tr(Amρ). The key

difference between a POVM and a quantum instrument is that, the output dimension of a quantum

instrument can be greater than one dO≥1. This makes a POVM a special case of a quantum instrument.

2.1.5 Choi-Jamiołkowski (CJ) isomorphism

In the previous sections, I have introduced elementary quantum objects: quantum state, evolution, and

measurement. I have shown all quantum evolutions are CPTP maps and measurements are associated

with CP maps. It is often useful to represent a linear quantum operator and a quantum map in terms of

a positive semidefinite operator, we can do this via the Choi-Jamiołkowski (CJ) isomorphism [31, 32].

Physically, CJ isomorphism of a CP map (a linear operator) represents the output when the map

(operator) acts on an unnormalized maximally entangled state |1〉〉 = ∑i |i〉⊗|i〉, with {|i〉} being

an ONB of the input Hilbert space HXI . In case of an operator A∈XI⊗XO, we consider a ‘pure CJ

isomorphism’ defined as 2

|A〉〉= (1⊗A)|1〉〉. (2.29)

We represent the inverse CJ map as

A |ψ〉=
[
〈ψ|XI ⊗1XO .|A〉〉XIXO

]
(2.30)

Here, the bar, 〈ψ|, represents the complex conjugate. Two important examples of pure CJ ismorphism

are unitary operations and measurement-preparation operations.

a. Unitary operation: Consider a unitary U∈XI→XO with a matrix representation U=∑ jk u jk | j〉〈k|.
Here |k〉 is an ONB of the input Hilbert space and | j〉 is an ONB of the output Hilbert space. The

unitary condition imposes ∑l ulkul j=δ jk. The corresponding CJ vector |U〉〉 then becomes

|U〉〉XIXO=∑
jk

u jk |k〉XI ⊗| j〉XO . (2.31)

2As shown in Fig. 2.3, there are two definitions of CJ representation available in the literature. In this chapter, I am
describing the one in Refs. [5, 6] (see Fig. 2.3(a)—(c)). The other definition is given by an overall transpose [7, 33] (see
Fig. 2.3(d)—(f)). Two versions of CJ representations result in two different rules of linking different quantum operations
and processes (see Fig. 2.5). In the subsequent chapters, I will explicitly mention which definition I am using. In Figs. 2.3,
2.4, and 2.5, I aim to capture the mathematical formalism through pictures. For a detailed description, the readers are
encouraged to see Coecke’s work on “quantum picturalism" [34].
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XI Xo

(a) (b) (c)

(d) (e) (f)

Xo
XI

Xo XI Xo XI

Figure 2.3: Two versions of CJ representation for quantum states
(
a,d
)
, channels

(
b,e
)
, and mea-

surements
(
c,f
)
. The blue dashed lines represent the necessary transformation. In (a)-(c), I show

CJ representation as shown in Eq. (2.34) [5, 6]. Note the blue dashed lines go upward representing
unnormalised maximally entangled states isomorphic to the relevant systems (also called cup in
Ref. [34]). On the other hand, (d)-(f) shows a CJ representation with an overall transpose [7, 33]. For
example, CJ of the channel N is given by N=

[
∑i, j |i〉〈 j|⊗N(|i〉〈 j|)

]T . The blue dashed lines in this
case go downward representing transpose of unnormalised maximally entangled states isomorphic to
the relevant systems (also called cap in Ref. [34]).

b. Measurement-preparation: Next consider a measurement preparation operator A= |ψ〉〈φ |. Physi-

cally it means that we perform a projective measurement |φ〉〈φ | at the input Hilbert space and prepare

a post-measurement state |ψ〉 at the output Hilbert space. The corresponding CJ representation then

becomes

|A〉〉XIXO =
∣∣φ〉XI⊗(|ψ〉)XO. (2.32)

Next I consider the ‘mixed CJ isomorphism’ which is particularly relevant for representing CP

maps. For a linear map M∈XI→XO we have the following CJ representation

MXIXO=[1⊗M(|1〉〉〈〈1|)]∈XI⊗XO. (2.33)

=

dXI−1

∑
i, j=0

[
|i〉〈 j|XI⊗M(|i〉〈 j|)XO

]
. (2.34)

Here, dXI is the dimension of the system XI . In the case of a linear operator A acting on a density

operator ρ — AρA†, we can relate pure and mixed CJ representation as

M = [[A]] = |A〉〉〈〈A|. (2.35)

Note the use of the notation [[.]] in this case, which I will often use in the subsequent chapters. The

inverse map of a mixed CJ representation is

M(ρ) = TrXI

[
(ρXI⊗1XO)T .MXIXO

]
(2.36)
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Here, the superscript T represents the transpose operation. CJ isomorphism provides an important

definition for complete positivity of maps, a map is CP if and only if its CJ representation is a positive

semidefinite operator, i.e. MXIXO ≥ 0. If the map M is CPTP, then the Choi representation gives an

additional constraint

TrXO MXIXO = 1XI . (2.37)

Two important examples of quantum maps are trace and replace maps and POVMs.

Trace and replace map: A trace and replace map MX(ρ)=σ Tr(ρ) represents preparation of a

fixed state σ regardless of the input state, i.e. the input state is discarded. The corresponding CJ

representation is

MXIXO = 1XI ⊗ (σ)XO . (2.38)

POVMs: I have defined a POVM in Eq. (2.27). The corresponding CJ representation of such maps is

transpose of the POVM-element, i.e.

MXI = AT
m

XI . (2.39)

With these two maps, we can easily infer the CJ representation of an element of a quantum

instrument. For instance, a CP map of the form MX(ρ)=σm Tr(Amρ) has a CJ representation

MXIXO = AT
m

XI⊗(σm)
XO. (2.40)

2.2 Process Framework

Elementary quantum maps, as introduced in the previous section, transforms quantum states to quantum

states either deterministically (via CPTP maps) or probabilistically (via CP maps). However, it is

possible to allow for more general transformations. For instance, optimal cloning of a unitary operation

is an example of a transformation from a CPTP map to another CPTP map [35]. A transformation

from a quantum state to a CP map is also possible, an important example is a programmable quantum

processor [36], where a control quantum state—or program register, as in Ref. [36]—implements a

CP map on a target quantum state referred to as a data register. The framework that encompasses such

higher order transformation is formalised by a quantum supermap [3] or process matrix [7]. The input

CP maps {Mi}n
i=1 can be considered as operations performed by a group of n experimentalists in their

local laboratories. The higher order map or process matrix W represents the background. The local

parties can receive a quantum or classical input from the background, perform quantum operation on it

and then send the output back to their surrounding. Depending on the background process, the local

parties can either communicate with each other or not (i.e. it could be a no-signalling process). The

process W and all the local operations collectively create a new CP map N with CJ representation,

N=M1 ∗M2 ∗ . . .Mn ∗W. (2.41)
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AI

AO

BI

BO

CIE

U1

U2

(a) (b)

Wns

Wnm

AI

AO

BI

BO

Figure 2.4: Example of two quantum processes. The green shade represent the process, with the
construction shown in yellow. The empty slots are available to the local parties applying their quantum
operations; e.g., M : AI→AO can be applied to the slot AIAO. The dashed blue wires denote the
CJ isomorphism of the output systems, which are necessary to represent a process by a positive
semidefinite matrix. In (a), I show a no-signalling process Wns. This is a typical Bell-type scenario
where an entangled state ρ is shared between two parties. The inverted ground denotes tracing out
the corresponding quantum system since the output dimension of a quantum measurement is one.
In (b), I show a process that allows signalling between the local operations. The above example
shows a non-Markovian process Wnm (see Chapter 3) composed of an initially correlated state ρ , and
the subsequent entangling operations U1 and U2. Interestingly, unlike (a) and (b) the most general
processes do not show a fixed causal order between the local parties. We refer to them as indefinite
causal ordered processes (see Chapters 4, 5, and 6 ).

Here, Mi is the CJ representation of the map Mi. The operator ‘∗’ is called the link product [6]

representing the concatenation among the local operations. For two operators A∈X and B∈Y, the link

product A∗B is defined as follows

A∗B := TrX∩Y[(1X\Y⊗A)TX∩Y.(B⊗1Y\X)]. (2.42)

Here the superscript TX∩Y denotes partial transpose over the shared systems. Note that, when the

Hilbert spaces associated with all local operators completely overlap with that of the process matrix,

i.e. (X\Y)∪(Y\X)= /0, the link product reduces to a scalar quantity. This has an important implication

in generalising Born’s rule. To elucidate the motivation behind such generalisation, let me first

recapitulate Born’s rule, introduced in Eq.(2.21).Born’s rule gives the probability of a particular

measurement outcome given an input quantum state. The interpretation can be straightforwardly

extended for multiple POVM elements acting on different systems. For example, for a joint state ρXIYI
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U1

W

AI

AO

BIE

U1

W

AI

AO

BIE

(a) (b)

Figure 2.5: Linking local operations to processes. Red dashed lines show the necessary bending of
wires to join the process and the local operation. Depending on the definition of CJ representation, we
have two ways of linking. For Eq. (2.34), we have (a) admitting the link product (2.42). Note here red
dashes bend downward, i.e., partial transpose on the overlapping system is necessary. In (b), we have
CJ representation of Ref. [7, 33]. The red dashes bend upward. Hence, no transpose is required while
linking processes to the local operations.

on which we are applying two POVMs AXIXO
m and BYIYO

n , the probability of occurrence of the outcomes

m and n given the initial state ρ is P(Am,Bn|ρ)=Tr[(Am⊗Bn).ρ]. Interestingly, such interpretation is

problematic when multiple CP maps act on the same system sequentially. The challenge arises due to

the collapse of the quantum state. Each measurement induces a post-measurement state as shown in

Eq. (2.23). To mitigate this, in Refs. [37, 38] the authors proposed an interesting solution. As shown in

Fig. 2.4(b), the background process W∈⊗n
i=1A(i)

I ⊗A(i)
O depicts a comb-like structure, which is indeed

referred to as ‘quantum comb [5, 6]’, composed of the initial state ρ and open slots for the subsequent

CP maps {Mi : A(i)
I →A(i)

O }n
i=1. The overall concatenation represents a probability. Thus with the help

of Eqs. (2.41) , and (2.42) we can find the Generalised Born’s rule, i.e. probability of observing the

intermediate CP maps, given the initial state is

P(M1,M2, . . . ,Mn|ρ)

= Tr
[(

M
A(1)

I A(1)
O

1 ⊗M
A(2)

I A(2)
O

2 ⊗. . .⊗M
A(n)

I A(n)
O

n
)
.W A(1)

I A(1)
O A(2)

I A(2)
O ...A(n)

I A(n)
O
]
. (2.43)

In general, the set of valid process matrices should result in well-defined probabilities for all possible

local operations. To obtain a valid probability the process matrix should satisfy the following two

conditions:

Non-Negativity: The probability must be non-negative, for all local operations even if the local

operations are entangled among themselves. To elaborate, consider two local operations with CJ

representation MAIA′IAO
1 and MBIB′IBO

2 . The local operations are connected by a joint state ρA′IB
′
I . The

background is modelled by a bipartite process matrix W AIAOBIBO . The joint state and the process matrix

can be thought of as a new process ρA′IB
′
I⊗W AIAOBIBO . With this, the non-negativity of probability
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requires

Tr
[(

MAIA′IAO
1 ⊗MBIB′IBO

2

)
.
(

ρ
A′IB

′
I⊗W AIAOBIBO

)]
≥ 0 (2.44)

for all, MAIA′IAO
1 ≥ 0, MBIB′IBO

2 ≥ 0, ρ
A′IB

′
I ≥ 0. (2.45)

The above condition is satisfied only when the process matrix is a positive semidefinite,

W≥0. (2.46)

Normalisation The second criteria is that for all CPTP local operations, the probability must be

normalised. Hence, in case of two local CPTP operations with CJ representations MAIAO
1 and MBIBO

2 , a

valid process W AIAOBIBO should give

Tr
[(

MAIAO
1 ⊗MBIBO

2

)
.W AIAOBIBO

]
= 1, (2.47)

for all, MAIAO
1 ≥ 0, MBIBO

2 ≥ 0,

such that, TrAO MAIAO
1 =1AI , TrBO MBIBO

2 =1BI .

The relevant constraints associated with Eq. (2.47) are

Tr(W ) = dAOdBO, (2.48)

AIAOW =AIAOBO W, (2.49)

BIBOW =AOBIBO W, (2.50)

W =AO W +BO W −AOBO W. (2.51)

Here XW=TrX(W )⊗1X/dX is the ‘trace and replace operator’ with dX representing the dimension of

X . The above-mentioned constraints can be generalised to multi-partite process and are as follows [11]

W ≥ 0 (2.52)

TrW = dO (2.53)

W = P(W ) (2.54)

Here, dO=d
A(1)

O
d

A(2)
O
. . .d

A(n)
O

is the dimension of all output Hilbert spaces. P is a projector onto the

linear subspace P⊂A(1)
I ⊗A(1)

O ⊗. . .⊗A(n)
I ⊗A(n)

O .

2.2.1 Examples

I will end this section with two important examples of processes.

Quantum states: These are no-signalling processes, a typical example is a setup of Bell’s experiment.

As shown in Fig. 2.4(a), a joint state is shared between the input systems AI and BI , and there are open

slots for local operations. The corresponding process is

W AIBIAOBO=ρ
AIBI⊗1AOBO . (2.55)
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Let us consider the local parties are applying two POVM-elements EAI
1 (CJ representation MAIAO

1 ) and

EBI
2 (CJ representation MBIBO

2 ) on the each system of the joint state. Note that we have TrAO MAIAO
1 =ET

1
AI

and TrBO MBIBO
2 =ET

2
BI . Then the probability of performing the respective POVM elements according

to Eq. (2.43) reduces to Born’s rule, i.e.

P
(

MAIAO
1 ,MBIBO

2

)
= Tr

[(
MAIAO

1 ⊗MBIBO
2

)
.W AIAOBIBO

]
,

= Tr
[(

ET
1

AI⊗ET
2

BI
)
.ρAIBI

]
. (2.56)

Quantum Channels: Suppose a party A prepares a quantum state ρAO sends it to party B’s input

system BI through a background channel N : AO→BI . The corresponding process representation of the

channel is W AOBI . The party B performs a measurement to obtain a POVM element EBI . According to

Born’s rule, Eq. (2.21), the probability of observing the said POVM element is P(E|ρ)=Tr[E.N(ρ)].

On the other hand, using Eq. (2.43) we find

P(E|ρ)=Tr
[(

ρ
T
)AO
⊗EBI T

.W AOBI
]
, (2.57)

= Tr
[
EBI T

.TrAO

{(
ρ

T
)AO
⊗1BI .W AOBI

)}]
. (2.58)

We can absob the transpose in the defintion of the POVM-element EBI . The remaining part of the equa-

tion suggests, N(ρ)=TrAO

{(
ρT)AO⊗1BI .W AOBI

)}
. Comparing with the inverse CJ representation in

Eq. (2.36), we deduce

W AOBI = 1AO⊗N(|1〉〉〈〈1|)BI . (2.59)

Thus process representation of channel is equivalent to its CJ representation as in Eq. (2.33).

2.3 Background on information theory

The goal of a scientific theory is twofold, firstly to explain prior experimental observations, and then to

propose a falsifiable test. Extracting information through empirical evidence is the pillar of scientific

enquiry. This makes it imperative to attribute a precise meaning to the term information. Intuitively, the

information content, quantified in bits, denotes how much knowledge we can acquire from a random

measurement —the higher the randomness the larger the information content.

A measure of information was first introduced by Hartley in the 1930s. Essentially, his measure

was the logarithm of the dimension. In 1948, Claude Shannon conceptualized the modern information

theory in his seminal work [39]. Shannon’s contribution was so profound that the field is often referred

to as Shannon theory. Since then the field has flourished with the contributions of Kullback and

Leibler [40], Fano [41], Brillouion [42], Jaynes [43] and so on. The tools of information theory soon

found applications in a wide range of subjects — physics [42], statistics [44], computer science [45],

biology [46] and so on. The evolution of information theory is closely intertwined with physics. As

we will see shortly, the fundamental information-theoretic measure, entropy, was actually motivated
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by thermodynamics. In the same light, there has been an active discussion about the physical nature of

information. Landauer famously phrased, ‘Information is physical’ and in his seminal work [47], he

proposed a quantification of the energy cost of erasing one bit of information. The Landauer bound

was subsequently confirmed in several experiments [48–51]. Quantum mechanics has a great impact

on information theory. Quantum entanglement is an enabling resource that augments conventional

information processing tasks, resulting an independent research area, quantum Shannon theory [52]. A

significant aspect of my research involves this nascent and intriguing field.

In this section I will introduce basic information-theoretic measures, leaving specific use of those

measures to subsequent chapters. I will first give a brief overview of classical information theory and

then extend it to its quantum analogue.

2.3.1 Classical Shannon theory

The information signifies how much knowledge we can acquire from a system. The amount of

knowledge depends on our anterior ignorance about state of the system. If we are certain about

the state, we do not learn anything new by a further measurement — the net information content

is zero. In contrast, a maximally chaotic system gives us more opportunity to gain knowledge. In

this sense, one would argue the information is closely related to the thermodynamic entropy — a

measure of randomness of the system. Acquisition of information decreases the thermodynamic

entropy of the environment, as opined by Szilard [53]. On the other hand, erasing of information

increases thermodynamic entropy of the environment, as postulated by Landauer [47] and supported

by Bennett [54].

In classical physics, we model a state by a random variable. For the purpose of my thesis, I will

only focus on the discrete random variable. We represent each event in a random variable X by a

numerical label x with the corresponding probability pX(x). We assign the information content IX(x)

to an event x, defined as

IX(x)≡− log2(PX(x)). (2.60)

The base 2 in the logarithm indicates that the number of possible states is represented as a power of 2,

and the unit of information is a binary unit (bit).

Shannon entropy of a random variable

The information content in Eq. (2.60) is applicable to a particular event. However, we are more

interested in the net information of the overall system. Hence, we look for an average information

content, also known as Shannon entropy. The Shannon entropy H(X) of a random variable X is defined

by

H(X)=∑
x

pX(x)IX(x)=−∑
x

pX(x) log2(PX(x)). (2.61)

Before introducing further properties of Shannon entropy, I will digress a bit (again, no pun intended).

Although the term ‘entropy’ is reminiscent of thermodynamics and statistical mechanics, Shannon’s
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original intention was to build a model for communication theory. In Shannon’s own words, “My

greatest concern was what to call it. I thought of calling it ‘information,’ but the word was overly used,

so I decided to call it ‘uncertainty.’ When I discussed it with John von Neumann, he had a better idea.

von Neumann told me, ‘You should call it entropy, for two reasons. In the first place your uncertainty

function has been used in statistical mechanics under that name, so it already has a name. In the second

place, and more important, no one knows what entropy really is, so in a debate you will always have

the advantage [55].”

Even though Shannon’s original goal was different, the thermodynamic interpretation of Shannon’s

entropy is a research field in its own right and a full discussion on the same is beyond the scope of

this thesis. Nevertheless, I would like to emphasise a particular physical relevance: If we consider a

macrostate, where each of its microstates is associated to a probability pX(x), then Gibb’s entropy,

SGibbs, of the macrostate [56] is

SGibbs =−kB ∑
x

pX(x) ln(pX(x)) = (kB ln2) ·H(X). (2.62)

Eq. (2.62) gives Shannon entropy an operational interpretation: the Shannon entropy is the amount

of bits required to fully describe the ensemble. It has the following properties:

Non-negativity: The Shannon entropy is non-negative for any discrete random variable X ,

H(X)≥0. (2.63)

This is true because information content is always non-negative, and hence the average information

content is also nonnegative.

Concavity: The Shannon entropy is concave in the probability mass function pX(x). If we consider a

random variable X is composed of a probabilistic mixture of two random variables X1 and X2, such

that pX(x)=qpX1(x)+(1−q)pX2(x), then

H(X)≥ qH(X1)+(1−q)H(X2). (2.64)

The intuition behind this is that a random mixture increases the uncertainty of the state, and hence

increases the entropy.

Permutation invariance: The Shannon entropy remains unchanged under permutation, e.g., if we

shuffle a deck of cards, the entropy remains the same. This is true because Shannon’s entropy depends

only on the probability distribution, which remains unchanged under permutation.

Minimum and maximum value: The minimum value of the Shannon entropy is zero, which is the case

when only one event occurs with a certain probability. Similarly, Shannon entropy attains a maximum

value when all the events occur with an equal probability. For a random variable X with n possible

events, the maximum possible value of Shannon’s entropy is log2 n. Hence the following inequality

holds,

0≤ H(X)≤ log2 n. (2.65)
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Conditional entropy

Next let us consider two correlated random variables X and Y described by the joint probability mass

function PXY (x,y) with events of X being {x} and that of Y being {y}. The conditional entropy H(X |Y )
signifies the Shannon entropy of X given knowledge of Y and is given by

H(X |Y ) =−∑
x,y

pXY (x,y) log2(pX |Y (x|y)). (2.66)

As expected, if the random variables are independent, pXY (x,y)=pX(x)pY (y), the knowledge of Y

does not decrease the uncertainty of X . In that case H(X |Y )=H(X), i.e., information about Y does not

increase uncertainty of X . Hence we have

H(X)≥H(X |Y ), (2.67)

that is, conditioning does not increase Shannon entropy. Another important property of classical

conditional entropy is that it is always non-negative,

H(X |Y )≥ 0. (2.68)

Joint entropy

Joint entropy extends the notion of Shannon entropy to multiple random variables. If X and Y are

two random variables with joint probability distribution pXY (x,y), then the joint entropy H(X ,Y ) is

defined as

H(X ,Y ) =−∑
x,y

pXY (x,y) log2(pXY (x,y)). (2.69)

The joint entropy can be related to the conditional entropy:

H(X ,Y ) = H(X)+H(Y |X) = H(Y )+H(X |Y ). (2.70)

We can extend the definition for n random variables and get

H(X1,X2, . . . ,Xn) = H(X1)+H(X2|X1)+ · · ·+H(Xn|Xn−1, . . . ,X1). (2.71)

Applying Eq. (2.67) to the above equation, we get the sub-additivity of Shannon entropy,

H(X1,X2, . . . ,Xn)≤
n

∑
i=1

H(Xi), (2.72)

with equality if and only if the random variables are independent.
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Mutual information

Mutual information quantifies the correlation between two random variables. For two random vara-

iables X and Y , with joint distribution pXY (x,y), the mutual information is given by

I(X ;Y ) = H(X)−H(X |Y ) = ∑
x,y

pX ,Y (x,y) log2

(
pX ,Y (x,y)

pX(x)pY (y)

)
. (2.73)

When two random variables are uncorrelated, knowledge of Y does not change uncertaintly of X ,

H(X |Y )=H(X), leaving the mutual information I(X ;Y )=0. On the other hand, when X and Y are

maximally correlated, knowledge of Y , removes the randomness in X , i.e. H(X |Y )=0. This is possible

when Y can be uniquely represented as a function of X
(
Y= f (X)

)
. In that case the mutual information

is simply the Shannon entropy of X , I(X ;Y )=H(X). Mutual information has two important properties:

Symmetry: I(X ;Y ) = I(Y ;X) and

Positivity: Simple rearrangement of Eq. (2.67) yields I(X ;Y )≥0.

Relative entropy

Relative entropy gives a quantification of the separation between two probability distributions. To

define relative entropy, we first define the support of a function. The support of a function f (x)

is the set of its arguments having non-zero images, that is supp( f ) = {x: f (x)6=0}. For instance, a

probability distribution containing one impossible event, p={0.8,0.1,0.1,0}, has support supp(p) =

{0.8,0.1,0.1}.
The relative entropy D(p||q) of two probability distributions p(x) and q(x) is defined as

D(p||q) =

∑x p(x) log2

(
p(x)
q(x)

)
, if supp(p)⊆ supp(q)

+∞, otherwise
(2.74)

Note that, the relative entropy is not symmetric, D(p||q)6=D(q||p), so it is not a proper distance

measure. It is sometimes called a quasi-distance between two probabilities [1]. Its definition can also

be problematic at times. For instance, if one distribution is defined as p(0)=1 and p(1)=0 and the

other distribution is defined as q(0)=1−ε and q(1)=ε , then the relative entropy is infinity even for a

very small but non-zero ε , i.e. D(p||q)=∞.

It is useful to relate the relative entropy to mutual information:

I(X ;Y )=D(pXY ||pX pY ). (2.75)

Here, pXY (x,y) is the joint distribution and pX(x) and pY (y) are the marginal distributions. Thus

operationally, mutual information represents the quasi-distance between the joint probability and the

distribution of the corresponding random variables represented by the product of its marginals.
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Conditional mutual information

Given random variables X , Y , and Z the conditional mutual information I(X ;Y |Z) is given by

I(X ;Y |Z) = H(Y |Z)−H(Y |X ,Z) (2.76)

= H(X |Z)−H(X |Y,Z) (2.77)

= H(X |Z)+H(Y |Z)−H(X ,Y |Z) (2.78)

Thus conditional mutual information formulates how the correlation between two random variables

changes given knowledge of a third random variable. Depending on the specific scenario, knowledge

of a particular random variable can either increase or decrease the mutual information. For example, if

X , Z, and Y form a Markov chain (X→Z→Y ), that is each random variable is dependent only on the

previous random variable, pXY Z(x,y,z)=PY |Z(y|z)pZ|X(z|x)pX(x), then knowledge of Z uncorrelates X

and Y , I(X ;Y |Z)=0, although I(X ;Y )6=0. On the other hand, if two independent random variables X

and Y constitutes a new random variable Z= f (X ,Y ), then knowledge of Z induces correlation between

X and Y , I(X ;Y |Z)6=0 although I(X ;Y )=0. An example of this scenario could be when X and Y

corresponds to two independent coin tosses with head being represented by 0 and tail being 1. If a

third random variable Z, corresponds to the parity of the toss results, Z= {z : z=(x+ y) mod 2}, then

with the knowledge of Z, and the result of one coin toss, we immediately know the result of the other

one.

2.3.2 Quantum Shannon theory

The initial motivation of quantum Shannon theory started with the advent of optical computing. In

the 1960s, Sudarshan and Glauber did pioneering work on quantum optics [57, 58], which motivated

scientists to utilise quantum systems to perform classical information processing tasks. An important

question was how much classical information one can encode in a quantum state. Holevo, in 1973,

answered this in his seminal paper [59]. The bound is now referred to as Holevo bound, which states

one can encode at most one classical bit per qubit. Around the same time Helstrom developed the theory

of quantum estimation and hypothesis testing [60]. The 1980s has seen some important developments

in quantum information theory. In 1982 Richard Feynman described how a quantum computer can

outperform classical computers when it comes to simulation of quantum systems [61]. This was the

first proposal utilising quantum information and an important departure from the previous decade

which focused only on exploiting classical information encoded in quantum systems. In the same year,

Wooters and Zurek [62], and Dieks [63] independently proved the no-cloning theorem. The no-cloning

theorem states that there is no universal unitary operation that can copy an arbitrary quantum state.

Two years later, in 1984, Bennett and Brassard proposed a groundbreaking work on establishing a

secret key using a quantum channel [64]— the famous BB84 protocol. In 1990s, the Ekert [65] and

B92 [66] protocols were developed. Additionally, this decade has seen tremendous development of

quantum information science, ranging from superdense coding [19], quantum teleportation [20], Shor’s

factorisation algorithm [67], classical capacity [68], entanglement assisted classical capacity [69], and
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quantum capacity [70] of quantum channels. The 2000s, saw works on state-merging protocols [71],

superactivation of quantum capacity [72], unification of different quantum protocols from a resource

theoretic framework [73], and network quantum Shannon theory [74]. All these developments

contributed to quantum Shannon theory being established as an interesting and actively researched

field.

In this section, I will introduce some basic entropic quantities relevant to quantum Shannon theory.

von Neumann entropy

The von Neumann entropy or quantum entropy is the quantum analogue of Shannon entropy. For a

density operator ρAI (the superscript means ρ∈AI), the corresponding von Neumann entropy is given

by

S(AI)ρ ≡−Tr(ρ log2 ρ). (2.79)

Note that, here I am putting the system AI as an argument with the density operator as a subscript.

This representation is particularly helpful when we talk about joint quantum entropy or conditional

quantum entropy. However, when there is no possibility of confusion, I will use a simpler notation

S(ρ). Some characteristics of the von Neumann entropy:

Relationship with eigenvalues: We observe an interesting property of von Neumann entropy when

we perform a spectral decomposition on the density operator, ρ=∑λ λ |λ 〉〈λ |, where {λ} are the

eigenvalues and {|λ 〉} are the eigenvectors. It turns out that the von Neumann entropy of the density

operator ρ is equal to the Shannon entropy of the distribution defined by the eigenvalues~λ={λ},

S(AI)ρ = H(~λ ) =−∑
λ

λ log2 λ . (2.80)

Non-negativity: The von Neumann entropy is non-negative for all density operators, i.e. S(AI)ρ≥0.

Minimum and maximum value: The minimum value of the von Neumann entropy is zero, as in the

case of pure states:

S(AI)ρ=0, if ρ is a pure state. (2.81)

Intuitively, when there is no ambiguity in the state preparation such that only one state is defnitely

prepared, we say that the state is pure. In such cases, we can always measure the state with certainty.

On the other hand, the maximum value is equal to the logarithm of the dimension as in the case of

a maximally mixed state, when we are maximally ignorant of the state preparation. For a maximally

mixed state, ρ=1/d, the von Neumann entropy is

S(AI)ρ = log2 d. (2.82)

Concavity: If a density operator ρ is obtained by mixing density operators {ρx} with corresponding

probability distribution p(x), i.e. ρ=∑x p(x)ρx, then concavity of von Neumann entropy ensures

S(AI)ρ ≥∑
x

p(x)S(AI)ρx (2.83)
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This is true because mixing always introduces more uncertainty and hence increases entropy.

Unitary invariance: Under unitary transformation, the von Neumann entropy remains unchanged,

S(AI)ρ = S(AI)UρU† . (2.84)

This is true because unitary transformation only affects the eigenvectors.

Joint quantum entropy:

Joint quantum entropy extends the notion of von Neumann entropy to multi-partite systems. For a

bipartite quantum system ρ∈AI⊗BI , the joint quantum entropy is simply

S(AIBI)ρ=−Tr(ρAIBI log2 ρ
AIBI). (2.85)

We observe the first radical departure from classical Shannon theory when we compare joint quantum

entropy of an entangled quantum system with the entropy of its subsystems. Let us consider a pure

bipartite entangled state |ψ〉∈HAI⊗HBI with Schmidt decomposition |ψ〉=∑i
√

αi |i〉⊗|i〉. As the

density operator ρAIBI= |ψ〉〈ψ| represents a pure state, the von Neumann entropy is zero S(AIBI)ρ=0.

However, when we consider the marginal states ρ ′AI=TrBI ρAIBI and ρ ′′BI=TrAI ρAIBI , we observe

both of them have equal and non-zero von Neumann entropies dictated by the Schmidt numbers,

S(AI)ρ=S(BI)ρ=−∑
i

αi log2 αi ≥ 0. (2.86)

Here S(AI)ρ=S(ρ ′) represents quantum entropy of the subsystem AI when the joint state is described

by ρAIBI . Similarly for S(BI)ρ=S(ρ ′′).

A maximally entangled state, e.g. a Bell state, is an extreme case of the example above. The

Marginals of a maximally entangled state are maximally mixed. For Bell states the von Neumann

entropy of each subsystem is 1 bit—we are fully ignorant of the parts, whereas the joint state has zero

entropy—we are certain of the whole system.

Arbitrary partition on a multi-partite pure state:Another interesting property of joint quantum entropy

is that when we apply an arbitrary partition on a joint pure state, the resulting two subsystems have the

same von Neumann entropy. For example, if we have a pure state ρAIBICI , then

S(AIBICI)ρ=0 (2.87)

S(AI)ρ=S(BICI)ρ (2.88)

S(BI)ρ=S(AICI)ρ (2.89)

S(CI)ρ=S(AIBI)ρ (2.90)

Additivity: An interesting property of the von Neumann entropy is that it is additive for a product state.

If a joint state τAIBI=ρAI⊗σBI , then the von Neumann entropy follows

S(τ) = S(ρ)+S(σ). (2.91)
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Conditional quantum entropy

The conditional quantum entropy represents how acquiring knowledge about one subsystem affects

the entropy of the other. For a density operator ρAIBI , the conditional entropy S(AI|BI)ρ is

S(AI|BI)ρ = S(AIBI)ρ −S(BI)ρ . (2.92)

Similar to the classical counterpart in Eq. (2.67), conditioning does not increase quantum entropy,

S(AI)ρ ≥ S(AI|BI)ρ . (2.93)

However, unlike Eq. (2.68), conditional quantum entropy can be negative. A simple example is when

ρ is a Bell state: The joint quantum entropy vanishes S(AIBI)ρ=0, but the subsystem has S(BI)ρ=1,

BI being a maximally mixed state, hence the conditional quantum entropy S(AI|BI)ρ=−1. Thus a

negative conditional entropy signifies entanglement. The intuition behind the negative value can be

found in state merging protocols [71]. The simplest version of state merging protocol considers an

n-copy of a bipartite state. There are two parties each sharing specific subsystems of the bipartite

state, and one party wants to send their share to the other party. The parties can use both quantum and

classical channels to communicate. It turns out for a large number of copies, the sender needs to use a

quantum channel nS(A|B) times. Interestingly, for a state with negative conditional entropy, the sender

does not need any quantum channel (not even a classical channel)—they can simply keep the entangled

bipartite state and use it for future quantum communication using teleportation. This future possibility

of quantum communication gives an operational interpretation of negative conditional entropy.

Conditional entropy is an interesting resource that its negative is a special quantity called coherent

information,

I(AI〉BI)ρ ≡−S(AI|BI)ρ = S(BI)ρ −S(AIBI)ρ . (2.94)

Quantum mutual information

Quantum mutual information captures correlation (classical as well as quantum) between two subsys-

tems. For a joint quantum state ρAIBI , the quantum mutual information I(AI;BI)ρ is given by

I(AI;BI)ρ = S(AI)ρ +S(BI)ρ −S(AIBI)ρ (2.95)

= S(AI)ρ + I(AI〉BI)ρ (2.96)

= S(BI)ρ + I(BI〉AI)ρ . (2.97)

Quantum mutual information is always non-negative, I(AI;BI)ρ≥0 for all ρ .

Holevo quantity

The Holevo quantity, originally defined by Holevo [59], determines how much classical information

one can send using a quantum state. To give a definition of the Holevo quantity, I will first introduce

the concept of a classical-quantum state. Suppose, a set of classical messages is defined by elements of
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a random variable X associated with probability mass function {pX(x)}. We can represent the entire

ensemble of classical messages in density matrix formalism ∑x pX(x) |x〉〈x|XI , where |x〉 represents an

ONB. For each classical message |x〉 we can prepare a quantum state ρBI
x and send them to the receiver.

In such a scenario, the overall state is given by a classical-quantum state σXIBI , where

σ
XIBI = ∑

x
pX(x) |x〉〈x|XI ⊗ρ

BI
x . (2.98)

The receiver has access to only the quantum states, so he measures the density operator ρBI where

ρ
BI=TrXI σ

XIBI=∑
x

pX(x)ρBI
x . (2.99)

The Holevo quantity χ(ρBI) determines the classical information content of ρBI and is given by

χ(ρBI) = I(XI;BI)σ = S(BI)ρ −∑
x

pX(x)S(BI)ρx . (2.100)

An important property of the Holevo quantity is that it is bounded by the logarithm of dimension of BI ,

χ(ρBI)≤ log2 dBI . For a qubit, the bound in 2.100 reduces to one bit. This means one can send at most

one classical bit per qubit.

Conditional quantum mutual information (CQMI)

For a tri-partite state ρAIBICI , we have a conditional quantum mutual information I(AI;BI|CI)ρ written

as

I(AI;BI|CI)ρ = S(AI|CI)ρ +S(BI|CI)ρ −S(AIBI|CI)ρ . (2.101)

The CQMI is always non-negative for any state ρ , I(AI;BI|CI)ρ≥0.

Quantum relative entropy

Quantum relative entropy gives a ‘quasi-distance’ measure between two density operators. To introduce

quantum relative entropy, I first define the support of an operator. The support of an operator

A∈L(HAI→HAO) is defined as

supp(A)≡ {|ψ〉∈HAI : A |ψ〉 6=0}. (2.102)

When A is Hermitian, it admits a spectral decomposition A=∑i ai |i〉〈i|. In that case supp(A) is spanned

by the eigenvectors,

supp(A) = span{|i〉 : ai 6=0}. (2.103)

The quantum relative entropy D(ρ||σ) of two density operators ρ and σ is defined as

D(ρ||σ) =

−Tr(ρ[log2 ρ− log2 σ ]), if supp(ρ)⊆ supp(σ)

+∞, otherwise
(2.104)
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Note that similar to its classical analogue, D(ρ||σ)6=D(σ ||ρ), hence the quantum relative entropy is

not a true distance measure.

Quantum mutual information is a special case of quantum relative entropy, for a quantum state

ρAIBI with its marginals ρ ′AI=TrBI(ρ) and ρ ′′BI=TrAI(ρ), the mutual information I(AI;BI)ρ is given

by

I(AI;BI)ρ = D(ρ||ρ ′⊗ρ
′′). (2.105)

2.4 Experimental Elements

Asher Peres famously said, “Quantum phenomena do not occur in a Hilbert space. They occur in

a laboratory” [75]. With that motivation, I am going to discuss how the mathematical concepts

introduced in previous sections could be physically realised. There are several platforms on which

quantum systems have been implemented: photons [76], cavity quantum electrodynamics [77], ion

traps [78], superconducting qubits [79], nuclear magnetic resonance [80], to name a few. As my

research interest lies in exploring quantum mechanics through optical phenomena, I will be focusing

on photonic implementation. Specifically, I will discuss two convenient degrees of freedom of light:

the polarisation and the transverse spatial modes.

2.4.1 Polarisation of light

Light being a transverse electromagnetic wave, the electric field associated with it undergoes oscillation

perpendicular to the direction of propagation. The polarisation of light signifies the geometrical

orientation of the vibration. The origin of polarisation is attributed to the Spin (also called spin angular

momentum or SAM) of the quantized light field —‘photons’ [81]. The word ‘spin’ was coined as it was

physically interpreted as rotation of the elementary particle around some axis. However, this notion was

later proved to be wrong due to the point-like nature of elementary particles. The classical analogue

of spin does not exist for some elementary particles. For photons, the classical description of spin

— polarisation — was well understood long before the birth of quantum mechanics. The generation

and manipulation of polarisation was also well-known. Due to the availability of this technology, the

polarisation is an important property used to realise a two-dimensional quantum system.

Representing quantum information with polarisation

Depending on the various directions of vibration, we ascribe different polarisation states to light. For

example, we represent |0〉≡|H〉 with a horizontally polarised light, |1〉≡|V 〉 with a vertically polarised

light. To represent any other plane of vibration, we use superposition of these two states. Two other

important orthogonal bases are diagonal (|0〉+ |1〉)/
√

2≡|D〉 and anti-diagonal (|0〉−|1〉)/
√

2≡|A〉
basis and the right-circular (|0〉−i |1〉)/

√
2≡|R〉 and left-circular (|0〉+i |1〉)/

√
2≡|L〉 basis. Most

natural sources of light are either unpolarised or partially polarised due to random change of the plane
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of field oscillation. To represent such states, we need density matrix formalism. We represent a mixed

polarised state with a density matrix ρ ,

ρ =
1
2

(
1+S1 S2−iS3

S2+iS3 1−S1

)
. (2.106)

Here, S1, S2 and S3 are the Stokes parameters [82] given as

S1 = 〈H|ρ |H〉−〈V |ρ |V 〉 , (2.107)

S2 = 〈D|ρ |D〉−〈A|ρ |A〉 , (2.108)

S3 = 〈R|ρ |R〉−〈L|ρ |L〉 , (2.109)

(2.110)

Comparing with Eq. (2.3), we can conclude that the Stokes parameters constitute the Bloch vector

of the density matrix with the radius of the Bloch sphere being |~S|=
√

S2
1+S2

2+S2
3 with |~S|=1 for a

pure polarised light and |~S|=0 for an unpolarised light. Interestingly a Bloch-sphere equivalent for the

polarisation, the Poincaré sphere, has been developed long before the advent of the quantum mechanics.

We show it in Fig. 2.6(a).

Preparing an initial quantum state

Polarised light naturally occurs when light is reflected off the sea or snow, light scattered in the sky

also has some degree of polarisation. However, generally most light sources are unpolarised. To obtain

a light of desired polarisation, we need a polariser. Such polarisers can be obtained through calcite

crystal, polarising beamsplitter (PBS), Glan-Taylor prism—all of which spatially separate the input

light into the horizontal and vertical components, i.e. there are two projectors associated with those

devices, |H〉〈H| and |V 〉〈V |. Alternatively, one can use a variable polarisation filter which filters out a

linearly polarised component depending on the angle of the filter. For an angle θ , the relevant projector

is Π(θ) := |ψ〉〈ψ| with |ψ〉=cosθ |H〉+sinθ |V 〉.

Performing a unitary transformation

To transform one particular polarisation state to a desired state, we perform a unitary transformation

using a half waveplates (HWP) and a quarter waveplate. An HWP performs a rotation along the

equator of the Bloch sphere and the corresponding unitary is represented as

UHWP(θ):=

(
cos2θ sin2θ

sin2θ −cos2θ

)
. (2.111)

The QWP takes a linearly polarised light to an elliptically polarised light. The corresponding unitary is

UQWP(θ):=
eiπ/4
√

2

(
1+icos2θ isin2θ

isin2θ 1− icos2θ

)
(2.112)

To produce a universal one qubit unitary, we use a combination of two QWPs and one HWP [83].
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Figure 2.6: Quantum state encoded in polarisation. (a) Representing the quantum state in polarisation
state of the light. The geometric representation was developed long before invention of the quantum
mechanics. The representative sphere is called the Poincaré sphere. (b) Measuring the stokes parame-
ters. A combination of quarter waveplate (QWP), half waveplate (HWP), and polarising beamsplitter
(PBS) can measure the Stokes parameters. The relevant angles are shown in Table 2.1.

Measuring the quantum state

As shown in Eq. (2.106), an arbitrary polarisation state depends on three Stokes parameters. Hence

we measure those parameters to effectively reconstruct the density matrix. As shown in Fig.2.6(b),

the necessary equipment are a HWP, QWP, a polarising beamsplitter, and a photon counter. Varying

the angles of the waveplate, we measure different polarisation components. An overcomplete Stokes

measurement is done by individually measuring all six polarisation components (horizontal, vertical,

diagonal, anti-diagonal, right-circular and left- circular).

Table 2.1, shows angles of HWP and QWP to measure the corresponding polarisation components.

From the photon count (nX for the polarisation component |X〉) obtained in each setup, we construct

the relevant Stokes parameter given by [82]

S1 =
nH−nV

nH+nV
, S2 =

nD−nA

nD+nA
, S3 =

nL−nR

nL+nR
. (2.113)

Component HWP QWP
|H〉 0 0
|V 〉 π/4 0
|D〉 π/8 0
|A〉 −π/8 0
|R〉 0 π/4
|L〉 0 −π/4

Table 2.1: Angles for wave plates to measure polarisation components.
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We can also perform Stokes measurement with minimal measurement, with the same setup as

in Fig.2.6(b). To do an optimal measurement of Stokes parameters, we measure four variables

{a0,a1,a2,a3}, with S1=a1/a0, S2=a2/a0, and S3=a3/a0. Then we note that for a for a QWP angle

φ and HWP angle θ , the intensity of the output light is [82]

I(θ ,φ) =
1
2
(a0 +a1 cos2θ +a2 cos2φ sin2θ +a3 sinφ sin2θ). (2.114)

Although the intensity of light is a classical concept, intensity is directly proportional to the photon

count for monochromatic light. Thus we can replace I(θ ,φ), with photon count n(θ ,φ). Tweaking the

angles of HWP and QWP, we find that

a0 = n(0,0)+n(π/4,0) (2.115)

a1 = n(0,0)−n(π/4,0) (2.116)

a2 = 2n(π/8,0)−a0 (2.117)

a3 = 2n(π/8,π/2)−a0. (2.118)

Note that, although the above method reduces the number of measurements, generally in experiments

overcomplete measurements are preferred. This is because the normalisation parameter changes

depending on the imperfect experimental devices. For example, light might undergo losses non-

uniformly along the waveplate angles. In the overcomplete measurement we naturally mitigate this by

normalising the Stokes parameters using the angle-dependent factors.

2.4.2 Transverse spatial mode of light

Polarisation of light provides an excellent resource for quantum information processing, however, it

is limited to two dimensions, that is one can pack only one bit of information per qubit. Utilising a

‘qudit’—a high-dimensional quantum state with d−levels—is advantageous for several reasons. Firstly,

realising a high-dimensional quantum state paves the way to pack more information in a quantum

system. A d-dimensional qudit allows a maximum information capacity of I= log2 d bits. This means

a smaller number of photons or particles can be used to achieve the same communication rate. Qudits

are also advantageous in secure communication. The key advantage in quantum key distribution

(QKD) is that it is impossible to perfectly copy an unknown quantum state—this provides security

against an eavesdropping attack. Nevertheless, it is possible to clone imperfectly—as in optimal

cloning— resulting in some leakage of information to the eavesdropper. Interestingly, the fidelity of

optimal cloning, Fclone=1/2+1/(1+d), declines with the dimension of the quantum system, from

83.3% for d=2 to approximately 50% for a very high-dimensional quantum system. This provides

higher resistance against an eavesdropper. Consequently, the high-dimensional QKD protocol allows

for higher error thresholds, from 13% for qubits to 50% for qudits [84]. One approach to access

such higher-dimensional quantum systems, is to couple multiple qubits each encoded by a different

degree of freedom of a quantum particle. Polarisation-path entangled photons [85, 86], time-frequency

entangled photons [87, 88] are few such examples. Another approach is to use degree of freedom
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that is naturally high-dimensional, such as the transverse spatial modes of light. Mair et al. [89]

were the first to use the transverse spatial mode as a carrier of quantum information, they showed the

entanglement of orbital angular momentum (OAM) of photons generated via spontaneous parametric

downconversion (SPDC). Subsequently, there has been active research interest in this field [90–94].

Figure 2.7: Modal decomposition of an arbitrary spatial mode of light. The figure is used from J.
Pinnell et al., “Modal analysis of structured light with spatial light modulators: a practical tutorial”,
JOSA A, 37, 2020 [95].

The transverse spatial mode of light is defined by the transverse profile of the monochromatic light

field. A monochromatic light field Ψ(x,y,z) propagating along z-axis, in paraxial approximation, is

given by

Ψ(x,y,z, t) = ψ(x,y,z).ei(kz−ωt), (2.119)

where k is the wave-number and ω is the anguar frequency of the light. The transverse profile ψ(x,y,z)

dictates the transverse spatial mode of the field. Two common families of spatial modes are the

Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) families. The HG modes are obtained by solving

the wave-equation in the rectangular coordinate and given as

HGmn(x,y,z)=Hm

(√2 x
w(z)

)
Hn

(√2 y
w(z)

)
exp
[
− ik

(x2 + y2)

2q(z)
+ i(m+n+1)ζ (z)

]
, (2.120)

where
1

q(z)
=

1
R(z)

− i
2

kw2(z)
, w(z)=wo

√
1+
( z

z0

)2
, R(z)=z

[
1+
( z

z0

)2]
. (2.121)

Here w0 is the beam width at z=0, z0=kw2
0/2, ζ (z)= tan−1(z/z0). Hm(.) and Hn(.) are the Hermite

polynomials with mode numbers m and n respectively. The phase (m+ n+ 1)ζ (z) is the Gouy

phase [96]. The radius of curvature of the beam is denoted by R(z). The LG modes are the paraxial

solution of the wave equation in the cylindrical coordinates and given as

LGl
p(r,φ ,z)=L|l|p

( 2r2

w2(z)

)
exp
[
− ik

r2

2q(z)
+ i(2p+ |l|+1)ζ (z)

]
exp(−ilφ). (2.122)

Here, l is the azimuthal mode index, p is the radial mode index, L|l|p is the associated Laguerre

polynomial, r and φ denotes the transverse coordinates. The Gouy phase of the LG mode is (2p+ |l|+
1)ζ (z). The extra phase factor exp(−ilφ) in an LG beam gives rise to a helical phase front and gives

rise to the OAM of the photon field. Note we omitted the intensity-normalisation constants in both

Eqs. (2.120) and (2.122).
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Representing quantum information with tranverse spatial mode

We first note that transverse spatial modes form an orthonormal basis. Specifically, if a set of transverse

spatial modes {Φa,b(x,y,z)}, with variables a, and b being the mode numbers, represents solution of

the paraxial wave equation in a specific coordinate, then it is an orthonormal set with the inner product

defined by the overlap of the transverse field profiles,〈
Φa′,b′

∣∣Φa,b
〉

:=
∫∫

∞

x,y=−∞

Φa′,b′(x,y,z)Φa,b(x,y,z)dxdy = δaa′δbb′. (2.123)

Here Φa′,b′(x,y,z) denotes the complex conjugate of the field pattern Φa′,b′(x,y,z). As shown in Fig.2.7,

given an ONB {Φa,b(x,y,z)}, any arbitrary field pattern ψ̃(x,y,z) can be decomposed in that basis,

ψ̃(x,y,z)=∑
a,b

αabΦa,b(x,y,z), (2.124)

with all the coefficients being complex {αab∈C} and ∑ab |αab|2=1. In principle, the mode numbers can

be any positive or negative real numbers (−∞≤ a,b≤−∞), allowing for arbitrarily high-dimensional

quantum systems. In practice, the geometry of the experiment limits the state space to finite dimen-

sions. The corresponding ONB can either have symmetric superposition, where the set of beams

has the same Gouy number — (m+n+1) for HGmn beams and (2p+ |l|+1) for LGl
p beams. For

example,
{

HG11,HG20,HG02
}

is an orthonormal basis (ONB) of a three dimensional Hilbert space.

In Fig.2.8(a), we show the Bloch sphere representation of a two dimensional Hilbert space with

HG10 ≡ |0〉 and HG01 ≡ |1〉. It is also possible to allow asymmetric superposition, where beams of

different Gouy families are taken as an ONB, for example we can consider a 3 dimensional ONB

consisting of beams with OAM {−5,−2,1}.

Preparation and measurement of the quantum state

Traditionally, the transverse spatial modes were generated using fixed diffraction gratings [98, 99].

Recent advancement in programmable spatial light modulators (SLMs) and deformable mirror displays

(DMDs) has paved the way to achieve robust spatial modes with unparalleled control over its phase and

amplitude profiles. To generate a desired spatial mode, we first display the computed hologram on the

programmable device. When a fundamental Gaussian beam reflects off this hologram, the diffraction

orders will contain the desired field (often optimised to be on the first order). The measurement

procedure, also known as modal decomposition is the reverse of this process [95, 100]. To measure the

overlap of an arbitrary field with a particular basis element, we shine the arbitrary field on the displayed

transmission function of the basis element. The output beam turns into a fundamental Gaussian beam

which is then collected to a single mode fiber and passed to a photon counter module. We show the

generation and detection method in Figs. 2.8 (b) and (c).

Unitary transformation

Current technology allows for the realisation of some unitary operations in transverse spatial modes.

Two important elements for this are rotating prisms and cylindrical lens pairs [101–103]. The light
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Figure 2.8: Quantum information using spatial mode of light. (a) Bloch sphere representation of spatial
mode of light. (b) Generation of an orbital angular momentum (OAM) state of light. The incoming
fundamental Gaussian mode of light (I) passes through a forked hologram (II). The resulting first order
diffractecd beam is the orbital angular momentum (OAM) state (III). (b) Measurement of an OAM
state of light. To measure, the procedure is reverserd. The incoming OAM state of light (I) when
matches with the corresponding forked hologram (II), it turns back to the fundamental Gaussian beam
in the first order diffraction (III). The resulting beam can be detected using a single mode fibre (SMF).
Figs. (b) and (c) are taken from Ref. [97].

field undergoes three consecutive reflections when going through a rotating prism. Such a prism results

in a rotation of the incoming spatial mode depending on the angle relative to optical axis. The rotation

matrix U1, U2, for d=2, and 3 respectively, are given by [102]

U1(φ)=

(
cosφ sinφ

−sinφ cosφ

)
, U2(φ)=


cos2 φ

sin2φ√
2

sin2
φ

− sin2φ√
2

cos2φ
sin2φ√

2

sin2
φ − sin2φ√

2
cos2 φ

 . (2.125)

Often while working with the transverse spatial mode, it is important to keep the polarisation unaffected.

Dove prisms often also change the polarisation. Alternatively, one can use an M-shaped prism which

changes the polarisation more predictably, as in a quarter wavepleate [104].

One way to transform an HG beam to an LG beam is to use a pair of cylindrical lenses, which

impart a selective phase shift depending on the particular basis element. The distance between the

lens pairs decide how much phase shift is imparted. For example, we obtain a π/2 mode converter

when a lens pair each of focal length of f , are placed f
√

2 distance apart. In such cases, an HG10

beam transmits without any change, but an HG01 experiences π/2 phase shift. As a result, an input

beam ψin=(HG10+HG01)/
√

2 transforms into ψout=LG1
0=(HG10+iHG01)/

√
2 , a Laguerre Gausian

beam. The two and three dimensional unitary matrices corresponding to a cylindrical lens pair, with a
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variable phase φ is given by [105]

Ucyl
1 (φ) =

(
e−iφ/2 0

0 eiφ/2

)
, Ucyl

2 (φ) =


e−iφ/2 0 0

0 1 0

0 0 eiφ/2

 , (2.126)

An arbitrary unitary, even in two dimension, requires a train of prisms and cylindrical lenses. Moreover,

as rotating prisms and cylindrical lenses produces rotation around only two orthogonal axes, in higher

dimension some unitary operations are inaccessible. Certain interferometric setup involving rotating

prisms have been utilised to obtain high-dimensional unitaries. For example, in Ref. [106] Babazadeh

et al., used rotating prisms, and spiral phase plate in an interferometric setup to implement four

dimensional X , X2, and X3=X† gates for a set of beams with OAM {−2,−1,0,1}. In Ref. [107],

Schlederer et al. showed four-fold cyclic transformation among the OAM {l}5
l=−6. In Ref. [108]

Romero and White proposed a volumetric holography technique to achieve arbitrary and controllable

high-dimensional unitaries. Subsequently, in Ref. [109] Dahl et al. showed a 101 dimensional

programmable X , Z and Fourier gate. Despite such unprecedented achievement, a recipe for arbitrary,

programmable quantum gate with high fidelity is yet to materialise and is still an open area of research.





Chapter 3

Experimental characterisation of a
non-Markovian quantum process

The following submitted manuscript is the basis of all of Chapter 3, except for the introductory material

in Chapter 3.1.

[12] K. Goswami, C. Giarmatzi, C. Monterola, S. Shrapnel, J. Romero, F. Costa, Experimental

characterisation of a non-Markovian quantum process, Phys. Rev. A 104, 022432 (2021).

See Section 3.6 for a breakdown of author contributions.

3.1 Introduction

In the previous chapter, I introduced the process formalism and promised some interesting applications

involving the higher-order maps. In this chapter I will describe how a higher-order map can be

used to represent a non-Markovian dynamic. In this work, I will use the process-matrix formalism

to represent a non-Markovian higher-order quantum map. Non-Markovian dynamics emerges in

open quantum system, i.e. when the system is open to interact with the environment. As shown in

Steinspring’s dilation theorem (Eq. (2.17)), the evolution of an open quantum system is defined by a

joint unitary evolution acting on the system and the environment. To capture the evolution of a state

for a time-duration t, we define a unitary Ut as

Ut = exp(−iHt). (3.1)

Here, H represents the time-independent Hamiltonian. To discuss dynamics of an open quantum

system, let us consider two scenarios: a) initially separable system-environment, and b) initially

correlated system-environment,
39
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3.1.1 Initially separable system-environment

First we consider a separable initial system-environment state. For a system ρs(0) and an environment

σE at t = 0, the evolved system ρs(t) at time t is

ρs(t) = TrE
[
Ut
(
ρs(0)⊗σE

)
U†

t
]
=Mt

(
ρs(0)

)
. (3.2)

Here Mt is a dynamical map that evolves a system from time T = 0 to t. As shown in Steinspring’s di-

lation in Eq. (2.17), Mt is a CPTP map. A set of dynamical maps {Mt : t≥0} with M0=1 characterises

the evolution of the system.

Although the joint system-environment state obeys the Schrödinger equation, an equivalent dif-

ferential master equation for the system generally does not exist. Specifically, if the evolution of a

quantum system admits a differential master equation, the system must be ‘local in time’—ρs(t+dt)

depends only on ρs(t) [110]. We refer to such time-local evolution as Markovian or memoryless. In

contrast, in a non-Markovian evolution, the present state of the system depends on its past states.

To tackle such dynamics, we often approximate a non-Markovian evolution with a Markovian one

for a large class of physical scenarios [111–114]. One such simple approximation is the Born-Markov

approximation with following two assumptions.

1) Born approximation: The environment is reasonably large and the correlation between the

system and the environment is sufficiently weak,

ρSE(t)≈ρS(t)⊗σE for all t≥0. (3.3)

2) Markov approximation : The environmental correlation produced by the system-environment

interaction decays rapidly compared to the timescale of the evolution of the system. In other words,

the environment is dissipative. The Markov assumption is applicable to an environment with a high

temperature.

Under the Born-Markov approximation, the evolution of the quatnum system is given by the

Gorini, Kossakowski, Sudarshan, and Lindblad (GKSL) master equation [115, 116], also known as

Lindbladian:

∂ρ

∂ t
=− i

}
[H,ρ]+

d2
S−1

∑
i=1

γi(LiρL†
i +{L

†
i Li,ρ}). (3.4)

Here, ds is the dimension of the system, H is the Hamiltonian and the operators {Li} are called the

Lindblad operators. The evolution respecting the GKSL master equation produces a set of dynamical

maps which satisfy

Mt1+t2=Mt2 ◦Mt1 for all t1, t2≥0. (3.5)

The dynamical maps following Eq. (3.5) are called the divisible maps, also known as CP-divisible.

These maps form a semigroup since they satisfy all but one group-theoretic postulate—the maps are
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not invertible. This property allows us to express them in terms of the generator L of the semigroup:

Mt=exp [Lt].

Interestingly, although all Markovian dynamics respect CP-divisibility, not all dynamics showing

CP-divisibility is Markovian—CP-divisibility is not a sufficient condition to imply Markovianity [117].

3.1.2 Initially correlated system-environment

Let us consider scenarios where the initially prepared system is correlated with the environment. In

practice this happens when preparation of the system disturbs the environment. In Ref. [118], Pechukas

showed that such initial system-environment correlation fails to produce physical dynamical maps. To

arrive at the conclusion, Pechukas introduced assignment maps ζ : S→SE, and defined the dynamical

map Mt as

Mt2+t1 = TrE
[
Ut2ζ

(
ρS(t1)

)
U†

t2

]
, (3.6)

where Ut2 is the joint unitary at time t2. The assignment maps are expected to obey following conditions:

1. Linearity: ζ
(

∑i piρi
)
=∑i piζ

(
ρi
)
,

2. Consistency: TrE
[
ζ
(
ρ
)]
=ρ , and

3. Positivity: ζ
(
ρ
)
≥0 for all ρ .

Pechukas subsequently showed that the above-mentioned conditions are met only when the initial

system is uncorrelated with the environment, i.e., to allow for the initial correlation, one of the three

conditions must be relaxed.

Relaxing the linearity constraint

In response to Ref. [118], Alicki [119] and Pechukas [120] decided to relax the linearity condition.

However, there are several adverse consequences of giving up the linearity constraint. From a pragmatic

point of view, quantum process tomography, and consequently the construction of dynamical maps is

not feasible without linearity. Moreover, all experimental attempts to detect a non-linear Schrödinger

evolution have failed [121]. A somewhat more severe consequence of doing away with linearity is that

non-linearity allows for cloning of an arbitrary quantum state— the violation of the no-cloning theorem

results in superluminal communication [22]. Finally, In Ref. [122], Jordan showed that linearity is

valid with an assumption that the system can co-exist with another system without interaction.

Relaxing the consistency constraint

To preserve linearity and complete-positivity it is necessary to relax the consistency constraint. In

Ref. [123] Rodríguez-Rosario et. al. showed that if the initial system-environment has ‘vanishing

quantum discord’, i.e., they are only left with classical correlation, the linearity and the complete

positivity condition can be ensured. Consequently, in Ref. [124], Shabani et. al. proposed that a
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vanishing discord is a necessary and sufficient condition to achieve complete positivity. However, in

Ref. [125] Brodutch et al. provided a counter-example where the complete positivity is not violated in

the presence of a non-zero discord—the vanishing discord is not a necessary condition. This led to an

erratum in [126].

Relaxing the positivity constraint:

The complete-positivity of the quantum maps results in meaningful experimental results by ensuring

valid probabilities. The CP constraint is fundamental to many important results in quantum mechanics,

e.g., Holevo bound, data processing inequality etc. Despite these, many researchers aimed to relax

complete-positivity of the dynamical maps and favoured non-completely positive (NCP) maps [127,

128]. The assignment maps associated with such maps preserve positivity of only a subset of quantum

states, ρS : ζ (ρS)≥0, known as compatible sets.

3.1.3 Operational difficulty with dynamical maps

Previously I discussed how a subset of initial system-environment state allows for physical dynamical

maps. This fails in the most general scenario. To perform a process tomography on the subsequent

dynamical maps, we need to prepare a set of known initial states by applying projector on the initial

system. The output states of the dynamical maps are subsequently measured (Fig. 3.1). This is not

problematic for initially separable system-environment, as the dynamical maps are independent of the

state-preparation, Fig. 3.1(a). However, in case of an initially joint state ρSE , a projection on the system

affects the environmental system. Thus the reconstructed future dynamical maps are conditioned on

the state-preparation, Fig. 3.1(b).

3.1.4 Resolving the initial correlation problem

From the discussion above, a major challenge in characterising a non-Markovian dynamics emerges:

how to achieve an experimentally controllable input without disturbing the characteristics of the dynam-

ics itself. To address the issue, the framework of quantum channels with memory by Kretschmann, and

Werner [8], and its matrix representation, the framework of quantum combs [5, 6] play a pivotal role.

Using this framework, in Ref. [10], the authors showed an operational approach: instead of describing

the non-Markovian dynamics using dynamical maps, we can characterise the dynamics (initially

correlated system-environment, and subsequent joint unitary evolution of the system-environment)

using the higher-order maps (process tensor formalism as coined by Modi). Unlike the dynamical

maps, the higher-order maps being positive semidefinite, Eq. (2.45), and respecting the normalisation,

Eq. (2.47), it provides a physical description of the dynamics irrespective of any initial correlation. To

characterise the evolution, we perform a tomography on the process matrix. As shown in Fig. 3.1(c),

a tomography can be done by applying a tomographically complete set of orthogonal measure and

prepare operations {Akl} on the initial system, the orthogonality condition dictates that their CJ

representations {Akl} obey Tr[A†
klA

†
k′l′]=δkk′δll′ . Subsequently after the joint unitary operation, we
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(a) (b) (c)

WNM

Figure 3.1: Quantum processes representing open quantum dynamics. (a) Initially separable system-
environment state. Performing quantum process tomography on the subsequent dynamical map is
not problematic as the set of projectors {Pi} does not affect the environment. Hence the future
dynamical map is independent of the state-preparation. (b) Initially correlated system-environment.
The projectors {Pi} affect the environment, i.e., the reconstructed dynamical maps are conditioned
on the state-preparation. (c) The process formalism solves the problem. Instead of describing the
evolution by dynamical maps, we can describe the dynamics by the process matrix WNM. We can
perform tomography to reconstruct the process matrix by applying tomographically complete measure
and prepare operations {Akl} and performing state tomography at the output with {M j} measurement
operators (see Ref. [129] for an experimental realisation ).

perform the state tomography at the output with {M j} measurement operators. An experimental

realisation of such scheme is shown by Ringbauer et.al. in Ref. [129]. Having introduced a background

on non-Markovianity, I am now presenting my research.

3.2 Our work

One key feature of non-Markovian dynamics is that the environment retains some information about

the past interaction with the system, which is manifested as temporal correlation among subsequent

operations. A higher order process efficiently captures the noise arising from such kind of correlation.

In a practical scenario where we want our quantum system to be isolated from the background, such

non-Markovian noise has a deterrent effect [130, 131]. It is important to design an efficient method to

characterise such non-Markovian noise [132].

Conventional noise-characterisation techniques, e.g. randomised benchmarking [133,134] assumes

Markovian evolution [135, 136]. In contrast, a complete characterisation of non-Markovian dynamics

is possible via local operations on the system alone [11,137]. A possible approach would be to perform

a complete tomography on a multi-time process [138, 139]. However, such method requires measuring

an exponential number of multi-time correlations. Here, we present a more resource-efficient solution.

We employ machine learning models to estimate the amount of non-Markovianity—as quantified by
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an information-theoretic measure— using tomographically incomplete measurement. In Ref. [140],

it was shown that one can successfully train a machine learning model to estimate a measure of

non-Markovianity, without full process tomography. This work, however, used only numerically

simulated data, and was not tested in an experimental setting.

We use a quantum optics experiment to implement a non-Markovian process—specifically, a

process with initial classical correlations between system and environment. We encode quantum states

in the polarisation of photons and apply unitary transformations using waveplates. We introduce non-

Markovian noise through correlated random unitaries, performed before and after a probe unitary. Our

data comprises the Stokes parameters, obtained through a final measurement, conditional on choosing

the probe unitary from a set of three unitaries. We train a suite of different supervised machine learning

models to predict non-Markovianity—as quantified by an entropic measure introduced in Ref. [137].

Our method achieves a high accuracy in the estimation of non-Markovianity, even though the training

data is far from being tomographically complete. The best results were achieved by a quadratic

regression model (R2 of 0.89 and Mean Absolute Error (MAE) of 0.045). Our work expands on the

growing literature of machine-learning methods [141–145] and on the experimental characterisation of

quantum non-Markovianity [129, 146–151].

In Section 3.3, we introduce the framework of the process matrix, the measure of non-Markovian

noise, and procedure of our data acquisition. In Section 3.4, we describe our experiment. In Section 3.5,

we analyse our experimental data using polynomial regression and present our results. In the Appendix,

aside from polynomial regression on the experimental data, we present our results on the simulated

data and our results obtained by other machine learning algorithms.

3.3 Theory

3.3.1 Formulation of quantum processes

Non-Markovian quantum processes are often described in terms of dynamical maps representing

the evolution of the system’s reduced state [152]. However, such a description does not capture

multi-time correlations mediated by the environment and can fail entirely in the presence of initial

system-environment correlations [118,153]. Here we use instead the process matrix formalism [7,154],

following a recent approach [137, 139] that has reformulated in operational terms the theory of

quantum stochastic processes [155, 156]. We consider a scenario where a system of interest undergoes

a sequence of arbitrary operations (such as unitaries or measurements) at well-defined instants of

time. Let us label A,B, . . . the times at which the operations are performed (we can think of these

labels as referring to “measurement stations”). The most general operation, say at A, is described by a

Completely Positive (CP) map MAI→AO that maps the input system of the operation AI to its output

system AO. The set of all measurement outcomes corresponds to a quantum instrument [157], namely

a collection of CP maps JA = {MA} that sum up to a CP and Trace Preserving (CPTP) map. Note that,

as a particular case, the instrument can contain a single map, representing a deterministic operation
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with no associated measurement (for example, a unitary transformation). Also, we typically take the

last output system to be trivial (as the system is discarded afterwards), in which case the instrument

reduces to a Positive Operator Valued Measure (POVM).

In a given quantum process, the joint probability for outcomes to occur at measurement stations

A,B, ... (corresponding to CP maps MA,MB, · · · ) is given by

p(MA,MB, · · · |JA,JB, · · ·) = Tr[W AIAOBIBO···(MAIAO⊗MBIBO⊗·· ·)], (3.7)

where MAIAO,MBIBO, · · · are the Choi matrices [32, 158] of the corresponding maps and W AIAOBIBO···

is the process matrix that surrounds the measurement stations A,B, · · · and lives on the Hilbert space

of their combined inputs and outputs. A Choi matrix, say MAIAO ∈ L(HAI ⊗HAO), that is isomorphic

to a CP map MA : L(HAI)→ L(HAO), is defined as MAIAO := [I⊗M(|1〉〉〈〈1|)]T . I is the identity

map, |1〉〉= ∑
dAI
j=1 | j j〉 ∈HAI ⊗HAI , {| j〉}dAI

j=1 is an orthonormal basis on HAI and T denotes matrix

transposition in that basis and some basis of HAO . The process matrix W is also known as process

tensor [137], or comb [4], and it is equivalent to a quantum channel with memory [159].

In this formalism, it was found that the process matrix of a Markovian process should have the

following form [11, 138, 160, 161]

W AB···
M = ρ

AI ⊗T AOBI · · · , (3.8)

where ρ is the density matrix of the initial state and by T AOBI we denote the Choi matrix of the channel

TA→B, defined as above but without the transposition—the same applies throughout the paper to all

the Choi matrices of channels in a process matrix.

The form of a Markovian process matrix in Eq. (3.8) has a straightforward interpretation: just

before the first operation (measurement station A), the system is in the initial state ρ . Between the

first and second operation, the system evolves according to a CPTP map T, which is uncorrelated

with the initial state, and so on, with all evolutions independent of each other and of the initial

state. Conversely, any process matrix that cannot be expressed in such a product form represents

non-Markovian evolution, where the environment mediates correlations between the initial state and

subsequent evolutions. To determine whether a process is Markovian, one needs first to reconstruct

the process matrix from experimental data through process tomography—which generally involves

non-destructive measurements at each station [138]—and then check if it W can be written in the

product form [161]. In the following, we provide a method to detect non-Markovianity without having

the full process matrix—instead, with incomplete data about the process, we can estimate with high

accuracy a measure of non-Markovianity.

3.3.2 Our non-Markovian process

We experimentally implement a non-Markovian quantum process with memory. We implement a

process with only two “stations”, A and B, and where the initial state is classically correlated with the

evolution from A to B. This is a particular case of a non-Markovian process with classical memory [11].
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Figure 3.2: A process based on a specific instance of unitary operations Ui and U j. The pair of
unitaries occurs with probability p(i, j). This makes our overall process W a convex combination of
the constituent processes, Wi j, i.e., W=∑i, j p(i, j)Wi j. This process W , operationally, represents the
environment. The experimenalist accesses the open slot AIAO with a probe unitary UK , as in Eq. (3.13)
and BI with a Pauli measurement.

We do this in two steps. We start with some initial state ρ followed by two operations Ui,U j. The

operations are unitaries from the Pauli group, Ui ∈ {σi, i = {0,1,2,3}} and U j ∈ {σ j, j = {0,1,2,3}},
where σ0 = 1,σ1 = X ,σ2 = Y,σ3 = Z. We insert A between Ui and U j and B after U j (Fig. 3.2). In

this first step, for a given pair of unitaries (Ui,U j), we obtain the following Markovian process

W AIAOBI
i j = (σiρσ

†
i )

AI ⊗ [[σ j]]
AOBI . (3.9)

In the second step, we simulate a non-Markovian environment by introducing correlations between

the initial state and the unitary. This is done by sampling the processes Wi j according to some

probability distribution p(i, j). The resulting process matrix has the form

W AIAOBI = ∑
i, j

p(i, j)W AIAOBI
i j . (3.10)

To obtain processes with a varying degree of non-Markovianity, the distribution of the weights

p(i, j) is chosen according to the discrete random variables I and J governed by the joint probability

mass function (pmf) p(i, j):=p(I=i,J= j). From Eq. (3.10), it is clear that when the random variables

I and J are independent, the overall process reduces to the product form of Eq. (3.9) and hence it

becomes a Markovian process. To capture the non-Markovian effect, we model the joint probability

p(i, j) as

p(i, j)=p(i)
[
qδi j +(1−q)p( j)

]
, (3.11)

Here q∈[0,1] denotes the strength of correlation between the random variables I and J with q=0 being

mutually independent events and q=1 being the maximum correlation, i.e. σ j=σi. We assume that

the marginal probabilities p(i) and p( j) to be the same probability mass functions. To define the

probability mass function, for p(i=0), we chose a random number uniformly distributed between 0

and R≥1. For the remaining p(i6=0), we chose random numbers uniformly distributed between 0 and

1. We normalise the random numbers at the end to form a valid probability mass function. A high

value of R signifies the evolution is less prone to error, i.e. the corresponding random operation is

biased towards identity. Note that the process becomes Markovian with either q=0 or R→∞.
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As a measure of non-Markovianity we use the quantum relative entropy [11, 52, 130, 137] between

the process and the associated Markovian one:

S(W̃ ||W̃Markov) := Tr[W̃ · (logW̃− logW̃Markov)], (3.12)

where W̃Markov := TrAOBI W̃ ⊗TrAI W̃ and W̃ := W/2 is the process matrix normalised to have unit

trace (obtained dividing the original process matrix by the dimension of the output system, AO in this

case).

In each realisation of W AIAOBI
i j with a pair of unitaries Ui and U j, we insert at A a unitary operation

Uk and at B we perform state tomography. Each such process W AIAOBI
i j has a circuit representation as

shown in Figure 3.2 and an experimental realisation as shown in Fig 3.3. The unitary operations of A

are a set of rotated Pauli operations

Uk=Rn̂(α)σkRn̂(α)†, (3.13)

where k={0,1,2} and Rn̂(α) denotes a rotation by α , around an arbitrary axis n̂ in the Bloch sphere,

given by

Rn̂(α) = cos
α

2
1− isin

α

2
(n̂.~σ), (3.14)

n̂.~σ = sinβ sinγσ1 + cosβ sinγσ2 + cosγσ3. (3.15)

Briefly, the experimental procedure of realising a process with classical memory and taking data

consists of the following steps: (1) Choosing a pair of variables (q,R) to obtain the weights p(i, j), (2)

Realising the processes Wi j, and for each one, taking data Di j by running through the operations at A

and B, and (3) Calculating the data D(q,R) = ∑i j p(i, j)Di j. This final data is our input to a model that

predicts the non-Markovianity of the process W = ∑i, j p(i, j)Wi j.

To complete the set of training, validation, and test data for our model, we calculated the non-

Markovianity for the realised processes— the label for each data D(q,R). For that, we need the explicit

description of the realised process matrix, which we can obtain from the above theoretical description.

We stress here that the input to the model that predicts the amount of non-Markovianity is data

taken by inserting the operations A and B into the process. These provide incomplete information

about the process. The full information would be provided by informationally complete operations, for

example, a prepare-and-measure operation at A, and state tomography at B (with a minimum of 64

operations for a 3-qubit W , such as ours). In our case, while B performs state tomography, A performs

3 Pauli unitary operations. However, even with this incomplete information, the model is able to

predict the chosen measure of non-Markovianity with ≈ 90% accuracy.

3.3.3 Generating data and labels

One key point to consider in any predictive modelling is to avoid inherent bias in the training dataset.

This bias can be manifested in terms of trivial transformation of the initial state. We account for this by

choosing a suitable initial state, ρ , that leads to processes resulting non-trivial output data. Our choice
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Fixed QWP Motorised QWP Motorised HWP

PBS
Laser source

D1

Fixed HWP

Preparation Ui MeasurementUjUk

Figure 3.3: Experimental setup. We use polarisation of light to encode the quantum state. The
experiment is divided into five stages — the first stage is state preparation, the second one implements
the unitary Ui, the third stage represents unitary Uk, the fourth one denotes U j and finally the last stage
denotes polarisation measurements.

q R
0.8 1
0.8 1.5
0.8 1.25
0.9 1
0.9 1.5
0.9 1.25

0.95 1
0.95 1.5
0.95 1.25

1 1

Table 3.1: Pairs of q and R to model our joint pmf as defined in Eq. (3.11). For each pair of q and R
we generate 100 pmfs, thus for 10 pairs we have a total of 1000 datasets.

of state is ρ= |ψ〉〈ψ|, with |ψ〉=0.16 |0〉+0.99e−i.0.16π |1〉. To model the probability mass function

as in Eq. (3.11), we take the 10 pairs of q and R listed in Table 3.1.

For each pair, we generate 100 joint probability mass functions thus creating 1000 different

processes as in Eq. (3.10) which are then divided into 100 groups classified by a given pair of q and R.

Note that a specific instance of the experiment corresponds to a pair of unitaries sampled randomly

from the underlying pmf. To experimentally realise the process in Eq. (3.10) described by a particular

pmf, we need to perform repeated trials. In our experiment, we take 50 samples of each pmf. This

finite sampling yields an experimentally realised process Wexp defined as

Wexp=∑
i, j

p̃(i, j)Wi j. (3.16)

Here, p̃(i, j) is the frequency of occurrence of the particular unitary pair (Ui,U j), and Wi j is the

constituent process defined in Eq. (3.9). For each (Ui,U j), we apply unitary operation Uk at the

second time-step as defined in Eq. (3.13) with α=β=γ=π/8. As discussed earlier, we interpret Uk

as an experimentally-controlled intervention, while Wexp simulates a noisy environment. Thus, in

each instance, we have the state evolving through an overall unitary operation U jUkUi. We mea-

sure the output state in the Pauli basis. Taking average over Ui and U j, we get the mixed state
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ρk=∑i, j p̃(i, j)(U jUkUi)ρin(U
†
i U†

k U†
i ). This state, when measured in σl basis, yields a Stokes parame-

ter Slk where

Slk = Tr(σlρk)

= Tr
{(

([[U∗k ]])
AIBI⊗σ

BO
l

)
·W AIAOBI

exp

}
. (3.17)

Note that both k, l ∈ {0,1,2}. For each process Wexp, we have total of 9 Stokes parameters—from now

on we refer to them as datapoints. We evaluate the measure of the non-Markovianity associated with

the process Wexp using Eq. (3.12) with W =Wexp—from now on, we refer to these measures as labels.

Thus, we have a total number of 1000 labeled data, each containing 9 datapoints and the corresponding

label.

3.4 Experiment

We show the experimental schematic in Fig. 3.3. We start with a heavily attenuated laser with

wavelength centred at 820 nm to create weak coherent states with 10000 counts per second. We

encode the state in the photon’s polarisation. Our experiment is divided into the following stages:

state preparation, implementing the unitaries Ui, Uk and U j, and state measurement. The polarisation

state is prepared using a series of waveplates (Fig. 3.3). The arbitrary unitaries in polarisation were

implemented using three waveplates, a half-waveplate (HWP) in between two quarter-waveplates

(QWP) as in Fig. 3.3 [83]. To automate the transition between unitaries, we used motorised stages.

Each Ui and U j change within the Pauli group. For each of them we need only two motorised stages

and a fixed QWP at 0◦(the angles for the waveplates are given in Table 3.2). For the unitary Uk, we use

three motorised stages. We control the motorised stages using a LabVIEW-controlled Newport XPS

series motion controller (through a TCP/IP protocol) and a Newport SMC 100 motion controller (with

serial communication to a computer). For preparing the state |ψ〉, we use another series of waveplates.

Since the first QWP of Ui is set to a fixed angle at 0◦, we can absorb that in the state preparation. After

successful implementation of state preparation and the unitaries, we measure the Stokes parameter of

the output light using a standard setup of QWP-HWP and polarising beamsplitter, as shown in Fig. 3.3.

Unitary QWP QWP HWP
1≡σ0 0 0 0
X≡σ1 0 π

2
π

4
Y≡σ2 0 0 π

4
Z≡σ3 0 π

2 0

Table 3.2: Angles for motorised wave plates to implement Ui and U j.
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Figure 3.4: Scatter plots for the second degree polynomial regression on the experimental dataset. The
y-axis represents the labels predicted by the regression model, and the x-axis represents the actual
labels. The dashed black line is the best straight line that explains the data. The R2 value associated
with the plot is 0.89 and the MAE is 0.045.

3.5 Polynomial Regression

A regression model attempts to predict a relationship between a set of independent variables (datapoints)

and an output variable (label) by utilising a polynomial function. Given a set of datapoints {xi}, a

polynomial regression model of degree n, finds the best prediction, ŷ, which is an n-degree polynomial

with input arguments {xi}. At first, to obtain a model, one uses a part of the labeled dataset, also

known as training dataset. Once the model is obtained, to check its efficiency, one needs to employ a

different group of data, known as test dataset. Hence, a common practice is to split the training and

the test set in 7:3 ratio. To quantify the accuracy of the model of the dataset, we evaluate the R2 value

and the Mean Absolute Error (MAE) [162, 163]. To define these metrics, we first consider {yi} as our

set of labels, with mean value of ȳ. We consider {ŷi} as the predicted labels. With this, the metrics can

be written as

R2 = 1− ∑i(yi− ŷi)
2

∑i(yi− ȳ)2 ,

MAE =
∑i |yi− ŷi|

N
. (3.18)

Here, |.| denotes the absolute value and N is the size of the dataset. An important aspect of a predictive

algorithm is to minimise overfitting. The overfitting occurs when the model learns about the training

set to the extent that it picks up random fluctuations in the training data to predict the labels. This

results in failure to predict any additional data. To check for the overfitting, we observe R2 and MAE

score for both training data and test data. We show our results in Table 3.3. We conclude that a

polynomial regression of degree 2 achieves the least overfitting with test R2 value of 0.89 and MAE of
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0.045. We show in Fig. 3.4 the scatter plot for the second degree polynomial regression. The figure

demonstrates the scatter plot between the test label and the predicted label.

Deg Train R2 Train MAE Test R2 Test MAE
1 0.71 0.076 0.69 0.075
2 0.91 0.042 0.89 0.045
3 0.94 0.035 0.85 0.052

Table 3.3: polynomial regression on the experimental data of size 1000. We keep 30% of the
experimental data as a test set and 70% of the same as a training set. We vary the degree of polynomial
regression (Deg). To demonstrate overfitting, we show the R2 and MAE for both training dataset and
the test dataset. We observe that a polynomial regression of degree 2 achieves the least overfitting with
test R2 value of 0.89 and MAE of 0.045.

k-Fold Cross Validation: A potential issue is that a one round test-train split might result a selection

bias because of the choice of test set. One way to account for it is to employ a k-fold cross validation

technique [164]. In a k-fold cross-validation, the data-set is randomly divided into k equal sized groups.

Out of the k groups, a single group is retained as the test set, and the remaining k−1 groups are the

training set. Once done, in the next turn another group is selected without repetition and the entire

process is iterated k-times. The results are then averaged to produce a single estimation. In our model,

we use a commonly accepted value of k=10 [163]. We show our results in Table 3.4. This ensures an

unbiased performance of our model.

Degree R2 MAE
1 0.69±0.07 0.076 ± 0.007
2 0.89±0.03 0.045 ± 0.004
3 0.87±0.02 0.051 ± 0.004

Table 3.4: k-fold cross validation on our experimental dataset for polynomial regression with degree
1,2, and 3 with value of k being 10.

Varying the size of dataset: It is interesting to investigate whether the algorithm performs well

while training on smaller datasets. To answer this, we fix the size of the test set to 300 and vary the

length of the training set. We show our results for a second degree polynomial regression, in the

Table 3.5. We observe that training set of size 210 achieves R2 = 0.87 and MAE= 0.051. This suggests

that even a small amount of experimental data is sufficient to achieve a reasonably good prediction.

Mixing with Simulated data: In practice, we may not have precise control over the environment.

Hence, we ask whether assistance of simulated data augments the performance of the model. we

investigate this by simulating a data set of length 14336. We proceed to vary the size of the simulated

dataset and mix it with 70% of the experimental dataset to train and test on the remaining 30% of the

experimental data. We observe that addition of simulated data deteriorates the performance of the

model. To be precise, we see that the higher the number of simulated data, the worse the performance
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LTD Train R2 Train MAE Test R2 Test MAE
70 0.86 0.057 0.15 0.123
140 0.96 0.031 0.84 0.053
210 0.94 0.036 0.87 0.051
280 0.92 0.040 0.87 0.049
350 0.91 0.042 0.88 0.047
420 0.91 0.043 0.88 0.047
490 0.91 0.043 0.89 0.046
560 0.91 0.043 0.89 0.046
630 0.91 0.043 0.89 0.046
700 0.91 0.042 0.89 0.045

Table 3.5: Second degree polynomial trained only on the experimental data of size 1000. We keep
a fixed 30% of the experimental data as a test set and vary the length of training dataset (LTD). We
show the R2 and MAE for both training dataset and the test dataset. We observe even with 210 training
dataset, we can achieve an R2 value of 0.87 and MAE of 0.051.

of the model. This is due to the mismatch of the experimental and simulated training data. To

circumvent this, we obtain simulated data with added white noise, potentially present in the setup. We

also simulate the finite sampling that occurs in the experimental procedure (we draw 50 times from a

probability distribution in Eq. 3.11). However, we do not observe an increase in performance.

Other machine learning algorithms: It is natural to expect other conventional machine learning

algorithms might outperform the regression. We report this negatively. In this section, we demonstrate

performance of several other standard machine learning algorithms, like K-Nearest Neighbour (KNN),

Decision Tree, Random Forest, Support Vector Regression (SVR), and Gradient Boosting [163]. We

split our experimental data into 70% training set and 30% test set. We show our results in Table 3.6.

When we consider overfitting, Support Vector Regression (SVR) performs the best (test R2=0.79, train

R2=0.78). Note that although Gradient boosting gives a better test R2, it overfits. This suggests that

polynomial regression of degree 2 is still our best choice.

Algorithm Train R2 Test R2 Test MAE
KNN 0.89 0.86 0.051

Decision Tree 1.0 0.64 0.081
Random Forest 0.98 0.88 0.049

SVR 0.78 0.79 0.069
Gradient Boosting 0.96 0.89 0.045

Table 3.6: Different machine learning algorithms trained on the experimental data of size 1000. We
split the experimental data into 30% test set and 70% training set and report the test and train R2 and
test MAE.
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3.6 Conclusion

Estimating non-Markovianity can be beneficial in practical scenarios, where the environment correlates

the different time-steps of a quantum experiment. We show that with only partial information about an

experimental setup, we obtain a measure of non-Markovianity with fairly high accuracy. We do this by

employing different machine learning models that take as input experimental data obtained through a

unitary operation and state tomography. We observe that a polynomial regression model of degree 2

achieves the best performance both in terms of overfitting and performance on the test set, which is

sufficiently high (R2=0.87) even with a small number of training data (500). A high score obtained by

a regression model obviates the need to employ a more intensive learning algorithm, which reduces

the time-complexity of the problem. This is especially beneficial to experiments where the opportunity

to collect a large dataset is limited.

Our experiment is particularly interesting once we enter the large-scale quantum computation

regime [165]. In this regime, correlated noise among the different gates is inevitable [166] and there is

an growing interest in developing error-correcting codes for this kind of noise [167–170]. Hence, our

approach provides a benchmark for further noise investigation on such multi-time-step processes.
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Chapter 4

Indefinite causal order in a quantum switch

This Chapter is based on the publication:
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Indefinite Causal Order in a Quantum Switch, Phys. Rev. Lett. 121, 090503 (2018).

See Section 4.6 for a breakdown of author contributions.

4.1 Introduction

In the previous chapter, I showed how a process matrix can represent a non-Markovian dynamics.

So far we have assumed that the local operations of the parties maintain a fixed causal order. Causal

relations here are defined through the possibility of transmitting signals between events. A fixed

causal order ensures if A sends some signal to B in a particular run of the experiment, B cannot send

any signal to A in the same run. Operationally, an event associated with each party is an elementary

quantum operation such as measurements, preparations, or transformations of a physical system. Note,

causality in the relativistic sense naturally falls within this domain: if A is in the causal past of B it is

possible to send a signal from A to B, while no signal exchange is allowed in reverse or for space-like

separated events. Although, a fixed causal structure is central to our daily experience, quantum

mechanics allows for a more generalised scenario with the possibility of superposition between two

causal structures: “A is in the causal past of B" and “B is in the causal past of A". We refer to such

superposition of different causal orders as indefinite causal order [5,7]. This counter-intuitive scenario

is plausible in the light of general relativity where the causal order is dynamic rather than fixed [171].

Indefinite causal order is relevant in quantum foundations since it aims to combine general relativity

and quantum mechanics [171, 172]. From a pragmatic perspective, an indefinite causal structure is

advantageous to computation [173], communication complexity [174–177] and other information

processing tasks [178–180]. To simulate an indefinite causal order experimentally, we implement a

device called the quantum switch [5]. A quantum switch is composed of a target quantum system and

a control quantum system. The control system controls the order of operations on the target. In this

chapter, I will describe how we have implemented a quantum switch. We use polarisation of light as a

control and transverse spatial mode of light as a target, the local operations are realised by a set of
55
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Figure 4.1: Space-time diagram of the quantum switch. A control qubit determines the order in which
two quantum operations, Â and B̂, are applied to a target qubit, ρt . In our experiment, the target
qubit is a pure state, ρt= |ψ〉〈ψ|t . (a) When the control is |0〉c, Â is applied before B̂. (b) When the
control |1〉c, B̂ is applied before Â. When the control is in the superposition (|0〉+ |1〉)c/

√
2 , there is a

superposition of the two orders, yielding the output state |φ〉=(B̂Â|ψ〉t⊗|0〉c+ÂB̂|ψ〉t⊗|1〉c)/
√

2 . (c)
In refs. [183,184], the control is the transverse position at which a photon passes through a set of wave
plates—consequently, the operations are performed in distinct spatial locations depending on the order.
(d) In our experiment, the control is polarisation, hence each operation takes place in a fixed spatial
location, independent of the order. The yellow pulses are graphical representations of the difference in
temporal characteristics: in (c) the pulses are orders-of-magnitude shorter than the experiment and its
internal components; in the (d) the pulses are orders-of-magnitude longer so that the operations are
indistinguishable in time as well as space.

rotating prisms and cylindrical lens pairs. To verify the ‘indefiniteness’ of the causal order in our setup,

we use a ‘causal witness’ [181] that distinguishes an indefinitely causal ordered process from causally

separable ones. Since our experiment in 2018, there have been several realisations of quantum switch

using different optical degrees of freedom. For an elaborate pedagogical review on these experiments,

the readers are encouraged to read our review Ref. [182].

4.2 Quantum switch

A schematic of a quantum switch is shown in Fig. 4.1. In a quantum switch, two quantum operations

Â and B̂ are applied to a target qubit ρt , their orders are controlled by a control qubit |ψ〉c. When the
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control qubit is in state |0〉c, Â acts before B̂. On the other hand, a control qubit in |1〉c ensures B̂ acts

before Â. A superposition of the control qubit, for example (|0〉+ |1〉)/
√

2 , leads to a superposition

of causal orders. Specifically, a switch represents a higher order map, S, that transforms two input

quantum channels Â and B̂ to a new quantum channel S(Â, B̂) with Kraus operators [2] S(Â, B̂)i j given

as

S(Â, B̂)i j=K(B)
i K(A)

j ⊗|0〉〈0|c+K(A)
j K(B)

i ⊗|1〉〈1|c . (4.1)

Here, {K(A)
i } are the Kraus operators of Â—Â(ρt)= ∑i K(A)

i ρtK
(A)†
i , with ∑i K(A)

i
†
K(A)

i =1. Similarly,

{K(B)
i } are the Kraus operators of B̂. With this, the joint input state ρt⊗ρc transforms to the output

state

S(Â, B̂)(ρt⊗ρc)=∑
i, j

S(Â, B̂)i j(ρt⊗ρc)S(Â, B̂)
†
i j. (4.2)

To represent the quantum switch map S in process matrix formalism, we first note that the switch

is composed of three parties—A corresponding to the operation Â, B corresponding to B̂, and C is

the party at the output of the quantum switch who generally performs a joint operation (operation on

the joint target-control system) occurring after both A and B. There are two possible situations—A

being in the causal past of B (A≺B≺C), and B is in the causal past of A (B≺A≺C). For a fixed input

state |ψ〉t⊗(|0〉c+ |1〉c)/
√

2 , as in our experiment, the corresponding process matrix of the quantum

switch is Wswitch = |w〉〈w|, where

|w〉= 1√
2

(∣∣∣wA≺B≺C
〉
⊗|0〉C

c
I

c +
∣∣∣wB≺A≺C

〉
⊗|1〉C

c
I

c

)
, (4.3)∣∣∣wA≺B≺C

〉
= |ψ〉AI

t ⊗|1〉〉
AOBI⊗|1〉〉BOCt

I , (4.4)∣∣∣wB≺A≺C
〉
= |ψ〉BI

t ⊗|1〉〉
BOAI⊗|1〉〉AOCt

I . (4.5)

Here, |1〉〉AOBI = |0〉AO⊗|0〉BI + |1〉AO⊗|1〉BI represents an identity channel from A’s outgoing space

AO to B’s incoming space BI for the target qubit. Similarly for |1〉〉BOCt
I , |1〉〉AOBI and |1〉〉AOCt

I . In

the above equation, the superscripts (AI,AO, etc.) specify the Hilbert spaces in which each term is

defined. In particular, Cc
I and Ct

I denote party C’s input Hilbert space of the control and target systems

respectively. Here, dimensions of all the systems in Eqs. (4.4) and (4.5) are two.

Note that a quantum superposition of causal orders is distinct from a probabilistic mixture where the

processes W A≺B≺C=
∣∣wA≺B≺C〉〈wA≺B≺C

∣∣ and W B≺A≺C=
∣∣wB≺A≺C〉〈wB≺A≺C

∣∣ occur with a probability

q and 1−q respectively. We refer to such a probabilistic mixture of definite ordered processes as a

causally separable process [7, 154, 181, 185] Wsep:

Wsep = qW A≺B≺C +(1−q)W B≺A≺C, (4.6)

where 0≤ q≤ 1. To differentiate between an indefinite causal ordered process and a causally separable

process, we need a causal witness. I discuss this in the next section.
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Figure 4.2: Causal witness S. A causal witness separates the processes that exhibit indefinite causal
order from those that do not. For a process W , with indefinite causal order, there exists a causal
witness, namely an operator S which results Tr[S ·W ]< 0. For any non-separable process Wsep results
Tr[S ·Wsep]≥0.

4.3 Causal witness

A causal witness is an observable which can certify a causally non-separable process [181, 186]. The

notion of the causal witness is governed by the separating hyperplane theorem [187], which states that

it is possible to find a hyperplane that separates two disjoint, closed-convex sets (see Fig. 4.2). As both

causally-separable and non-separable processes form a closed convex set, they can be separated by a

hyperplane. Specifically, for a particular causally non-separable process W (process that cannot be

decomposed as in Eq. (4.6)) it is possible to construct a witness S such that

〈S〉W=Tr[SW ]< 0. (4.7)

Any causally separable process Wsep, on the other hand, follows 〈S〉Wsep = Tr[SWsep]≥ 0.

The search for a causal witness for a given causally nonseparable process matrix such as the quantum

switch can be cast as a SemiDefinite Programming (SDP) problem that can be solved efficiently using

convex optimisation techniques [181, 186].

To simplify the experiment and the construction of the causal witness, we only measure the output

control system, i.e., we use a witness of the form 1Ct
I⊗SCc

I . Hence we use the reduced process matrix

by tracing out the output target system Ct
I from the Wswitch= |w〉〈w| [154, 181]. The reduced process

matrix W̃switch=TrCt
I
|w〉〈w| thus belong to the space AI⊗AO⊗BI⊗BO⊗Cc

I ; it can be verified that

its trace is 4, equal to the product of the dimensions of A and B’s outgoing spaces (note that in the

quantum switch, C has no outgoing space—or equivalently, a trivial 1-dimensional one) [7, 154, 181].

The set S of causal witnesses S, such that Tr[SW ]≥ 0 for all causally separable process matrices

W ∈Wsep is simply the dual of the closed convex cone Wsep (with respect to the Hilbert-Schmidt inner

product defined by the trace). It is also a closed convex cone, and was characterized in Refs. [181,186]

in terms of linear and semidefinite constraints for the case of interest for the quantum switch, where
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Wsep,S⊂ AI⊗AO⊗BI⊗BO⊗CI . In order to prove the causal nonseparability of the quantum switch,

it suffices to find a witness S ∈ S such that Tr[SW̃switch]< 0. One may however want to optimise the

choice of the witness in terms of its resistance to experimental noise. As shown in Refs. [181, 186],

this can be done by minimising Tr[SW̃switch] over the cone S. Fixing the value Tr[S] to 8 (the product of

the dimensions of A, B and C’s incoming spaces) ensures that the optimisation does not diverge to −∞,

and provides a practical interpretation for the optimal value of −Tr[SW̃switch] obtained as a result of

the optimisation, as the random robustness of W̃switch with respect to white noise—i.e., −Tr[SW̃switch]

is the minimal value of r that makes 1
1+r (W̃switch+ r Î/8) causally separable, where Î/8 represents here

a maximally mixed state received by A,B and C.

The optimisation just described is a SDP problem. Further constraints can also be imposed on S.

In our experiment, we want to be able to measure S by letting A and B only implement unitaries Â, B̂

taken from the set U= {Î, X̂ ,Ŷ, Ẑ, P̂ = Ŷ+Ẑ√
2
, Q̂ = X̂+Ẑ√

2
}, and by letting C perform a measurement of

X̂ . The statistics thus obtained allow us to calculate terms of the form Tr[(A⊗B⊗ X̂)W̃switch], for

Â, B̂ ∈ U (with A,B denoting their Choi representation). Note also that a trivial “measurement” of Î

on the control qubit gives Tr[(A′⊗B′⊗ Î)W̃switch] = 1 for any CP trace-preserving maps A′,B′, so

that such terms can also be trivially included in Tr[SW̃switch]; in fact it suffices to consider the term

with A′ = B′ = Î/2. Our setup thus allows us to calculate Tr[SW̃switch] for any witness of the form

S = 1
4

(
Î +∑Â,B̂∈U γÂ,B̂A⊗B⊗ X̂

)
with any real coefficients γÂ,B̂, which leads us to impose such

a form in our optimisation problem.1 Notice that we already included the constraint Tr[S] = 8 by

introducing the factor 1
4 , as Tr[Î] = 32 for the identity operator Î acting here on the 25-dimensional

Hilbert space HAI ⊗HAO⊗HBI ⊗HBO⊗HCI .

The causal witness we measure in the experiment is the result of the following SDP problem:

minimize Tr[SW̃switch]

such that S = 1
4

(
Î +∑Â,B̂∈U γÂ,B̂A⊗B⊗ X̂

)
∈ S,

γÂ,B̂ ∈ R. (4.8)

The nonzero coefficients γÂ,B̂ we thus obtained are listed in Table 4.1, together with the corresponding

theoretically expected and experimentally measured values of the Stokes parameters 〈X̂〉Â,B̂, that

allow one to calculate the value of the causal witness, 〈S〉= 1+ 1
4 ∑Â,B̂ γÂ,B̂ 〈X̂〉Â,B̂. The theoretically

expected value is found to be 〈S〉=Tr[SWswitch]'−0.248.

4.3.1 Taking experimental imperfections into account

Because of experimental imperfections in the operations that take place at events A, B and C, the

witness measured in the experiment does not exactly match the ideal one. Therefore, it is in principle

possible that the expectation value 〈Sexp〉 of the experimentally measured witness Sexp is negative for

1We also checked that with our choice of unitary operations for A and B, allowing for measurements of Ŷ or Ẑ on
the control qubit in C—i.e., also adding terms of the form γ Y

Â,B̂
A⊗B⊗ Ŷ and γ Z

Â,B̂
A⊗B⊗ Ẑ in S—does not help further

decrease the value of Tr[SW̃switch] in our optimisation problem (4.8).
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some causally separable process. This means that strictly speaking, an experimental negative value

cannot be taken as a proof of causal nonseparability. To go around this problem, we derived a corrected

causal bound b < 0 such that Tr[SexpWsep]≥ b for all causally separable process matrices Wsep, where

Sexp is estimated based on our understanding of the source of the experimental imperfections.

The main source of errors in the implementation of the unitaries lies in setting the angles of each

optical element that realises the unitaries. We estimate the new causal bound with a simulation of

our experimental causal witness Sexp, adding errors of 1◦ to the angles of each optical element in the

unitaries and looking for the combination that minimises b (i.e., the worst-case scenario within the

expected range of errors). We find that our witness is sufficiently robust to these errors: we varied

randomly (up to ±1◦) the angles of each optical element in the unitaries and estimated the new causal

bound with the following SDP:

minimize Tr[SexpW ]

such that W ∈Wsep. (4.9)

Using our simulation of the experimental witness Sexp, we ran 1000 different configurations of the

experimental angles having errors of up to±1◦. When we set he errors in the angles with a random sign,

and a random, uniformly distributed, amplitude in [0,1], we reached a minimum value of b =−0.029;

when the errors had a random sign but a fixed amplitude of 1◦ the minimum value was b =−0.038.

Our measured value is still below these bounds.

4.4 Experiment

Our light source is a diagonally-polarised, 100 kHz linewidth (approximate coherence length of 1km)

laser beam at 795 nm, in the lowest-order transverse spatial mode, the Hermite-Gaussian mode HG00.

We transform the beam into a HG10 spatial mode by first passing the beam through an element that

adds a π-phase to half of the beam—a cover slip on a tip-tilt mount that spans half of the beam. The

resulting spatial mode is a superposition of odd-order Hermite-Gaussian modes [188]. We then use

spatial Fourier filtering to remove most of the higher-order spatial modes leaving just the HG10 mode.

The qubit space of the target system consists of first-order spatial modes, where we define |0〉= |HG10〉,
and |1〉= |HG01〉. The initial state of |ψ〉t (Fig. 5.1) is taken to be |0〉.

A polarising beamsplitter (PBS1) splits the beam into the top and bottom arms of an interferometer,

see Fig. 4.3. The unitary operations in these arms, Â and B̂, act on the transverse spatial mode, but

should, ideally, not change the polarisation of the beam. The top and bottom arms are combined at the

output polarising beamsplitter, PBS2, and the resulting mode is sent back to the other input of PBS1;

this relay arm contains a telescope to ensure mode-matching, i.e., that the spatial mode that re-enters

the interferometer is the same as the input spatial mode.

We realise the unitary operations Â and B̂ using a combination of inverting prisms [189] and

cylindrical lenses [190,191] as shown in Fig. 4.5. The inverting prisms rotate the incoming spatial mode.

Unlike Dove prisms which act as poor polarisers [192], an inverting prism also acts approximately as a
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Â B̂ γÂ,B̂ 〈X̂〉theor.
Â,B̂

〈X̂〉exp.
Â,B̂

Î X̂ -0.1967 1 0.9090 ±0.0003
Ŷ -0.1967 1 0.8931 ±0.0003
Ẑ -0.2775 1 0.9208 ±0.0003

X̂ Î -0.1967 1 0.8801 ±0.0004
X̂ -0.2572 1 0.8952 ±0.0003
Ŷ 0.2332 -1 -0.8365 ±0.0004
Q̂ 0.5143 0 0.0553 ±0.0007

Ŷ Î -0.1967 1 0.9647 ±0.0002
X̂ 0.2332 -1 -0.8259 ±0.0004
Ŷ -0.2572 1 0.8346 ±0.0004
P̂ 0.5143 0 0.0107 ±0.0008

Ẑ Î -0.2775 1 0.9099 ±0.0003
Ẑ -0.6131 1 0.8558 ±0.0004
P̂ 0.5143 0 0.0059 ±0.0008
Q̂ 0.5143 0 -0.0714 ±0.0007

P̂ Ŷ 0.5143 0 -0.1217 ±0.0007
Ẑ 0.5143 0 -0.1539 ±0.0007
P̂ -1.0286 1 0.9394 ±0.0002

Q̂ X̂ 0.5143 0 0.0177 ±0.0007
Ẑ 0.5143 0 -0.0209 ±0.0008
Q̂ -1.0286 1 0.9659 ±0.0002

Table 4.1: Data for the different combinations of unitary operations Â and B̂. The coefficients γÂ,B̂ were
obtained by solving the semidefinite programming problem described in Eq.(S2) (for the combinations
of Â and B̂ not shown in the table, the SDP returned a null coefficient γÂ,B̂ = 0, up to numerical
precision). The expectation value 〈X̂〉Â,B̂ of the polarisation measurement on the control qubit after the
unitaries Â and B̂ were applied is effectively a Stokes parameter. Together with γÂ,B̂, the table lists both
the theoretically expected values, 〈X̂〉theor.

Â,B̂
, and the experimentally measured values, 〈X̂〉exp.

Â,B̂
, of this

Stokes parameter. Error bars (1σ ) were calculated by propagation of error on the individual Stokes
parameter with Poissonian counting statistics.

quarter-waveplate on polarisation [189], which we compensate using a combination of quarter- and

half-waveplates.

Transformations for spatial modes require more optical elements than transformations for polarisa-

tion, hence in constructing the witness, we considered a tradeoff between its robustness to noise and

the number of elements required to measure it in our setup. For this reason, in our experiment each

operation Â and B̂ is chosen among one of the following six unitaries acting on the transverse spatial

mode: the identity operation Î, the three Pauli operators X̂ , Ŷ and Ẑ, and the two linear combinations

P̂ = (Ŷ + Ẑ)/
√

2 and Q̂ = (X̂ + Ẑ)/
√

2 . These operations produce spatial modes that are either

first-order Hermite-Gaussian or first-order Laguerre-Gaussian modes, thus keeping the spatial mode

in the {|HG10〉 , |HG01〉} qubit subspace. Fig. 4.6 illustrates the resulting spatial modes for an input

target qubit in the HG10 mode.
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Input

PBS1

PBS2

L1

L2

B

A

C

Figure 4.3: Experimental schematic. The control qubit is defined by polarisation. The polarising
beamsplitter PBS1 routes the photon into either events A or B, which realise unitary operations Â or B̂
acting on the spatial mode of the photon. Event C is a X̂ polarisation measurement, determining the
Stokes parameter of the photon in the diagonal/anti-diagonal basis. Lenses L1 and L2 are used as a
telescope to ensure mode-matching.

Figure 4.4: Preparation method for our input state. We started with a horizontally polarised fundamental
Gaussian mode (HG00). We placed a cover slip to introduce a π-phase shift to half of the beam. The
resulting beam is a superposition of odd-order Hermite-Gaussian modes, as shown in (a). The higher
order modes are eliminated by performing a spatial filtering on the beam, the resulting beam is in the
HG10 mode, as shown in (b). The HWP is used to make the beam diagonally polarised. The spatial
beam profiles in the figure are simulated.
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L3 L4

Figure 4.5: Top view of the setup for realising the unitary operations Â and B̂ using a set of special
inverting prisms R, and pairs of cylindrical lenses C. The prisms rotate the incoming transverse mode,

effectively implementing the rotation R(θ) =
(

cos2θ sin2θ

sin2θ −cos2θ

)
in the {|HG10〉 , |HG01〉} qubit

subspace. The cylindrical lenses give a π/2 relative phase shift to Hermite-Gaussian components

of the incoming photon, effectively implementing C(π/2) =
(

1 0
0 i

)
. The spherical lenses (L) are

used for mode-matching. The half-waveplates (H) and quarter-waveplates (Q) are used to correct
polarisation changes caused by reflections in the prisms and ϕ represents a phase plate. The unitary
operations of our interest are realised by varying the angles θ1 and θ2. For example, in the figure R(θ1)
is rotated by 45◦ and for R(θ2), the angle is set at 0◦. With a 0◦ global phase, the above setup represents
an X̂ operation which transforms an input Hermite-Gaussian HG10 beam to a Hermite-Gaussian HG01.

in
te
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1

0

 π

Ι X Y Ζ Y+Z X+Z

-π

Figure 4.6: Spatial transformations. The result of the unitaries acting on an input spatial mode of HG10
are also first-order spatial modes.

4.4.1 Implementation of unitaries

The six unitaries necessary for the calculation of our causal witness are:

Î =

(
1 0

0 1

)
, X̂ =

(
0 1

1 0

)
, Ŷ =

(
0 −i

i 0

)
, Ẑ =

(
1 0

0 −1

)
, P̂ = Ŷ+Ẑ√

2
= 1√

2

(
1 −i

i −1

)
and Q̂ =

X̂+Ẑ√
2

= 1√
2

(
1 1

1 −1

)
.

To implement these unitaries we used the setup shown in Fig. 4.5. C(π/2) is a mode-converter

which shifts the Hermite-Gaussian mode HG01 by π/2 out of phase with respect to the Hermite-

Gaussian HG10 component. R(θ) is a M-shaped rotating prism oriented at a physical angle θ , which

reflects and rotates an incoming beam by 2θ . These are represented by the following matrices:
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Unitary ϕ θ1 θ2
Î −π

2
π

4
π

4
X̂ 0 π

4 0
Ŷ 0 0 π

4
Ẑ 0 0 0
P̂ 0 0 π

8
Q̂ 0 π

8 0

Table 4.2: Phases and angles for the unitary operations realised in our experiment, given by Eq. (S3).

C(π/2) =

(
1 0

0 i

)
and R(θ) =

(
cos2θ sin2θ

sin2θ −cos2θ

)
. We started with an HG10 mode prepared as in

Fig. 4.4, using a cover slip to impart a π-phase shift to half of an incoming HG00 beam, and encoded

our target qubit in the spatial mode such that |HG10〉= |0〉=

(
1

0

)
and |HG01〉= |1〉=

(
0

1

)
. After

spatial Fourier filtering, a HWP was used to set the polarisation of the control.

The transformation performed by each box A and B (for a beam propagating from left to right in

Fig. 4.5) can be written as

U(ϕ,θ1,θ2) = eiϕ C(π/2)R(θ2)C(π/2)R(θ1), (4.10)

where the global phase ϕ can be imparted by a tilted phase plate which is placed only when Î is

one of the operations. The rotating prisms act like a quarter-waveplate, shifting one linear polari-

sation by π/2 out of phase with respect to the other, hence a combination of a HWP and a QWP

are used for polarisation correction. The cylindrical lens pairs in this implementation are fixed,

and placed in between two spherical lenses to match the beam waists to that required by the mode-

converters [193]. We only have two rotating components, the two inverting prisms. This is enough to

implement the six unitaries as listed above given the following angles and phases as shown in Table 4.2.

4.4.2 Polarisation measurement at the output

At the interferometer output, after PBS2, event C corresponds to a polarisation measurement in the

diagonal/antidiagonal basis—a measurement of the Stokes parameter corresponding to 〈X̂〉—selected

using a half-waveplate and a third polarising beamsplitter. Due to experimental imperfections in the

optical elements, the output mode has a marked transverse interference pattern, typically with two

to three fringes. An iris is used to collect only light from one fringe, and this is then collected by a

multimode fibre connected to a single-photon detector, thus tracing out the spatial mode of the photons.

For our witness, there are 21 combinations of Â and B̂ for which the coefficient γÂ,B̂ is nonzero.

Fig. 4.7 shows the measured Stokes values 〈X̂〉Â,B̂ for each of these combinations: the red bars are the

theoretically expected values, which should all be +1, −1 or 0; the blue bars are the values measured

in our experiment.
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-1

-0.5

0.5

1

Theoretical
Experimental

Figure 4.7: Stokes parameters 〈X̂〉Â,B̂ obtained by measuring the polarisation of the output control
qubit in the diagonal basis. The red bars show the ideal, theoretical values and the blue bars are the
experimentally measured values. The unitary combinations are defined by combining the unitary
operations at the top arm (Â) and the bottom (B̂) arm, maintaining the order Î, X̂ , Ŷ , Ẑ, P̂ = Ŷ+Ẑ√

2
and

Q̂ = X̂+Ẑ√
2

. A Stokes parameter of +1 means the output is diagonally polarised light, −1 means it is
anti-diagonally polarised light. 1σ errors are too small to be visible in the plot.

4.4.3 Result

There are two main sources of errors in our experiment: rotational misalignments and imperfect

mode matching. The inverting prisms are mounted on manual rotation stages with an uncertainty

in angular position of 1◦. Our witness is robust against these misalignments: accounting for these

errors, one can derive a new corrected bound for causally separable processes, which we find to be

close enough to zero that we still have room to obtain an experimental value below it. The imperfect

mode-matching degrades the visibility of the interference of the spatial modes, which is then reflected

in the values of the Stokes parameters that we obtain. We have modelled these imperfections and

predict an expectation value for our causal witness within the range −0.20 . 〈S〉. −0.14, c.f. the

ideal value of 〈S〉 ' −0.248.

We measure 〈S〉=−0.171±0.009, within our expected range, and a value that is 18 standard

deviations from the bound 〈S〉≥0 satisfied by all causally separable processes. Taking into account

misalignment errors, the measured value is still 14 standard deviations below the—most conservative—

corrected bound of 〈S〉≥−0.038 for causally separable processes. This confirms that the measured

process is causally nonseparable: it has no definite causal order.

The control and target systems in our experiment are encoded—as in previous experiments [183,

184, 194]—on different degrees of freedom of a single particle. As in all experiments, there are

non-ideal aspects. Our experiment—and those of Refs. [183, 184]—do not overtly suffer from these
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non-ideal aspects as can be seen by the high visibility observed in all implementations. The high

visibility ensures the target operations are sufficiently similar for different control states, and that there

is no net operation on the control.

4.5 Conclusion

Our architecture offers promising routes for further experimental investigations. Having polarisation

as the control degree of freedom enables for instance using polarisation-entanglement—which can

be of very high quality, e.g. reaching a tangle of T ' 0.987 [195]—as the control for entangling

the causal order of different quantum switches [172, 194]. Having transverse spatial modes as the

target degree of freedom enables encoding qudits—as opposed to qubits—for investigating quantum

communication with indefinite causal order in larger Hilbert space dimensions [175,180]. The benefits

of using qudits for quantum information processing applications, such as improved security in quantum

cryptography and higher information capacity in quantum communication, are well-known [196, 197].

Moreover, certain protocols demonstrating an advantage from indefinite causal order will require

qudits for their implementation [175, 180]. Our implementation thus offers the possibility of exploring

these advantages in the future. Other challenges include realising quantum switches that put more than

two events in an indefinite causal order, and physically separating the control and target systems, so

that the parties’ actions on the target system for different control states cannot be distinguished even in

principle.
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Chapter 5

Communicating via ignorance: Increasing
communication capacity via superposition of
order

The following publication has been incorporated as Chapter 5.

1. [14] K. Goswami, Y. Cao, G. A. Paz-Silva, J. Romero, and A. G. White, Increasing communication

capacity via superposition of order, Phys. Rev. Res. 2(3), 033292 (2020).

See Section 5.6 for a breakdown of author contributions.

5.1 Introduction

Noise is ubiquitous: communication protocols aim to optimize the amount of information that can be

sent through a channel with a given amount of noise. In the limit of a completely noisy channel, no

information can be transmitted [39]. This is true even with a single quantum channel [52]. Surprisingly,

quantum physics offers strategies to transmit information in the scenario of two noisy channels,

e.g.,via superposition of path [198–200], or via superposition of order [180, 201, 202]. In these

strategies the superposition in a control qubit determines the superposition in path or causal order.

Placing two completely noisy channels in a superposition of paths—that is in different arms of an

interferometer—allows some classical information to be communicated, at least 0.16 bits when the

paths are equally weighted. Placing them instead in a superposition of causal order—that is the order

in which the channels are applied is indefinite—allows up to 0.049 bits to be communicated when the

orders are equally weighted [180]. Here we show that using superposition of causal order, a greater

communication advantage can be achieved than superposition of paths [203], ideally up to 100% of

information.

We use the quantum switch, a physically realizable process that simulates the superposition of

causal order, which has been implemented in several photonic experiments [13, 176, 183, 184, 204].

We follow the experimental setup of from the previous chapter.
69

https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033292
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033292


70 CHAPTER 5. COMMUNICATING VIA IGNORANCE

(a) (b) (c)

Figure 5.1: Classical communication through a quantum switch. The sender maps the classical message
bit to a quantum state ρt—the target qubit. ρt passes through two noisy channels Np and Nq. The
order of the channels is controlled by a control qubit |ψc〉. (a) When the control qubit ρc= |ψc〉〈ψc|
is off, i.e., |ψc〉= |0〉, the channels have a definite order Nq◦Np. (b) When the control qubit is on,
|ψc〉= |1〉, the order is Np◦Nq. (c) When the control is in a superposition, |ψc〉=(|0〉+ |1〉)/

√
2 , the

channels have an indefinite order.

We analyze, and experimentally demonstrate, communication through various combinations of

noisy and unitary channels in an indefinite causal order. We provide an example where perfect

transmission is possible, given the freedom to choose the measurement basis of the control that

determines the order. We outline the mathematical description of the channels and provide an

experimental method to estimate the information-theoretic advantage quantified by the Holevo capacity,

χ [59].

5.2 Background

We depict the communication protocol in Fig. 5.1. The sender maps a classical message into a quantum

state ρt= |ψt〉〈ψt |, which we will refer to as the target qubit. This state passes through two generalised

Pauli channels Np and Nq. We describe the noisy channels acting on the target qubit ρt as

Np(ρt)=
3

∑
i=0

piσiρtσ
†
i (5.1)

Nq(ρt)=
3

∑
i=0

qiσiρtσ
†
i , (5.2)

where ∑i pi=∑i qi=1. As the equation suggests, each Pauli channel is a probabilistic mixture of all

three Pauli errors via the identifications: σ1≡σx (bit flip); σ3≡σz (phase flip); σ2≡σy (combination

of bit flip and phase flip); and σ0≡I. The order that these two channels are applied to ρt is selected

by a control qubit ρc. If the control is off, |0〉c, then the order is Nq◦Np, i.e., Np is before Nq.

If the control is on, |1〉c, then Np◦Nq. However, if the control qubit is in a superposition state,

|ψ〉c=(|0〉+ |1〉)c/
√

2 , the channels Np and Nq have indefinite causal order. Specifically, given a
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target qubit ρt and a control qubit initially in the state ρc=|ψc〉〈ψc|, where |ψc〉=
√

γ |0〉+
√

1−γ |1〉,
the total output state of the switch becomes

Ŋ[Np,Nq](ρc⊗ρt)=∑
i, j

Ki j(ρc⊗ρt)K
†
i j (5.3)

with

Ki j=piq j(|0〉〈0|⊗σiσ j + |1〉〈1|⊗σ jσi) (5.4)

In matrix representation, the overall output state becomes

Ŋ[Np,Nq](ρc⊗ρt)=

(
A B

B Ã

)
, (5.5)

with,
A=γNq ◦Np(ρt),

Ã=(1− γ)Np ◦Nq(ρt),

B=
√

γ(1− γ) (ε+(ρt)− ε−(ρt)),

(5.6)

where (ε−) ε+ represents an auxiliary trace non preserving map composed of all the operators from

Np and Nq that (anti-commute) commute. That is,

ε+(ρt)=
3

∑
i=0

piqi ρt +
3

∑
i=0

r0i σiρtσ
†
i (5.7)

ε−(ρt)=r12 σ3ρtσ
†
3+r23 σ1ρtσ

†
1+r31 σ2ρtσ

†
2 , (5.8)

with ri j=piq j+p jqi. Note that Np◦Nq(ρt)=ε+(ρt)+ ε−(ρt)=Nq◦Np(ρt), any definite order of Np

and Nq will have the same effect on the target qubit. To take an extreme example, if Np and Nq were

both completely depolarizing, either of the definite orders Np◦Nq(ρt) or Nq◦Np(ρt) will completely

scramble the target qubit.

Interestingly, the output of a quantum switch [Eqs. 5.5 and 5.6] implies that some information

is contained in the control qubit. Depending on the outcome of a measurement in the σ c
1 basis of

the control qubit, we obtain either of the conditional states ε+(ρt) or ε−(ρt). This means that a σ c
1

measurement allows us to estimate information encoded in the target qubit, and confirm whether there

is a communication advantage when Np and Nq are in an indefinite order.

In our quantum switch experiment, the control qubit is the polarization of light. A σ c
1 measurement

in this case is equivalent to a Stokes measurement S2(Ŋ[Np,Nq]) at the output of the quantum switch

Ŋ[Np,Nq]. As Eq. 5.2 suggests, the channels Np and Nq can be constructed from combinations of Pauli

operations {σi} acting on the target qubit. In the following subsection, we show how S2(Ŋ[Np,Nq])

can be calculated from Stokes measurements S2(Ŋ[σi,σ j]) at the output of a quantum switch of σi and

σ j, Ŋ[σi,σ j]. This means that rather than physically implementing Ŋ[Np,Nq], we can simply use Stokes

measurements from Ŋ[σi,σ j], so long as we keep track of the Pauli operations we perform, in effect

using an additional memory.



72 CHAPTER 5. COMMUNICATING VIA IGNORANCE

5.2.1 Estimating the Stokes parameter of the quantum switch

With the Pauli decomposition discussed above, we now show how measurements of the control qubit,

ρ̃c, can be used to estimate the Holevo capacity. Since our control qubit is polarization, we express the

output control in terms of the Stokes vector (S1,S2,S3) [82]:

ρ̃c=
1
2

(
1+S1 S2+iS3

S2−iS3 1−S1

)
. (5.9)

From Eq.5.5, if we measure the output control state, ρ̃c becomes,

ρ̃c=

(
Tr(A) Tr(B)

Tr(B) Tr(Ã)

)

=

(
γ Tr(B)

Tr(B) 1− γ

)
, (5.10)

where the second equality comes from the fact that, Pauli channels are trace preserving. It is easy to

see that Tr(B) is a real number, so comparing Eq. 5.9 and 5.10 at γ=1/2, we can see that S2=2Tr(B)

and S1=S3=0. Thus we consider the effect of the quantum switch on the S2 component of the control,

note that to distinguish the operations on the control and target, we use σ c
0 , σ c

1 , σ c
2 and σ c

3 for the

control qubit and σ0, σ1, σ2 and σ3 for the target qubit,

S2(Ŋ[Np,Nq])=Tr{(σ c
1⊗σ0) .Ŋ[Np,Nq]}

=∑
i, j

piq j Tr{(σ c
1 ⊗σ0) .Ŋ[σi,σ j]}

=∑
i, j

piq j S2(Ŋ[σi,σ j])

(5.11)

The above equation shows that with knowledge of the control qubit for individual combinations of

σi,σ j we can get the S2 of the switch with channels Np and Nq.

From Eq. 5.11, we get ρ̃c, and we can calculate the von Neumann entropy H(ρ̃c), which is necessary

to obtain the Holevo capacity as shown in Eq. 5.13. The other quantity needed to evaluate 5.13 is the

minimum entropy of the total output Hmin(Ŋ[Np,Nq]). In order to calculate this, let us first write the

action of the quantum switch, in terms of individual combinations of Pauli operations:

Ŋ[Np,Nq] (ρc⊗ρt) = ∑
i, j

piq j (γ |0〉〈0|c ⊗ σiσ jρtσ
†
j σ

†
i

+(1−γ) |1〉〈1|c ⊗ σ jσiρtσ
†
i σ

†
j

+
√

γ(1−γ) |0〉〈1|c ⊗ σiσ jρtσ
†
i σ

†
j

+
√

γ(1−γ) |1〉〈0|c ⊗ σ jσiρtσ
†
j σ

†
i )

= ∑
i, j

piq j Ŋ[σi,σ j](ρc⊗ρt) (5.12)
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From Eq. 5.12, we notice that from pairwise combinations of σi and σ j operators we can find out

the output Ŋ[Np,Nq] (ρc⊗ρt) and its minimum entropy Hmin(Ŋ[Np,Nq]), given we use an optimized

target state ρt . Note that, the operations in {σi} either commute or anti-commute. We can construct

Ŋ[σi,σ j](ρc⊗ρt) by projecting the control qubit into the diagonal/antidiagonal basis which results to

a product state. Denoting the anti-commutator by {...} and the commutator by [...], we have, with

γ=1/2,

Ŋ[σi,σ j](ρc⊗ρt)=



|+〉〈+|c⊗{σi,σ j}ρt {σi,σ j}†

for [σi,σ j]=0

|−〉〈−|c⊗[σi,σ j]ρt [σi,σ j]
†

for {σi,σ j}=0

.

The value of the Stokes parameter S2(Ŋ[σi,σ j]), which is 1 (−1) for commuting (anti-commuting)

operations in the ideal case, can be experimentally obtained by noting that S2(Ŋ[σi,σ j])=Tr[(σ c
1 ⊗

σ0)Ŋ[σi,σ j](ρc⊗ρt)], i.e., expectation value of the operator σ c
1 ⊗σ0.

The Stokes parameters S2(Ŋ[σi,σ j]) are important because we use these to obtain the output control

qubit ρ̃c after tracing out the target qubit. With knowledge of ρ̃c, we can then calculate the Holevo

capacity χ(Ŋ[Np,Nq])—a measure of the maximum amount of classical information that can be

transferred through our arrangement of indefinitely ordered channels. This is given by [180]:

χ(Ŋ[Np,Nq])=1+H(ρ̃c)−Hmin(Ŋ[Np,Nq]), (5.13)

where Hmin(Ŋ[Np,Nq]) is the von-Neumann entropy of the two-qubit output of the quantum switch,

minimised over the input target state. On the other hand, H(ρ̃c) is the von-Neumann entropy of the

output control qubit ρ̃c.

5.3 Experiment

In our experiment, we implemented the quantum switch with all 16 pairs of σi and σ j, as shown in Table

5.1. We measured S2(Ŋ[σi,σ j]), i.e., the diagonal and anti-diagonal components of the polarization

of the output light, for each pair σi,σ j, with the control qubit initialised to |ψ〉c=(|0〉+ |1〉)c/
√

2 —

diagonally polarized light. We measure over 10 s; the measured rate at the control output is around

100,000 counts per second. Table 5.1 summarizes the results. The first two columns are the ideal

settings for the target operations on the transverse spatial mode, σi,σ j, the third and fourth columns

are the ideal output transformations, ρ̃t , ρ̃c of the target and control qubits, respectively. Fig. 5.2

shows the action of the transformations from column 3 on our choice of input target qubit. The last

two columns are the ideal and measured values of the Stokes parameter of the control output. We

minimize the uncertainty in each measurement by accumulating a large number of counts. Computer-

controlled waveplates, with angular orientation uncertainty of ±(2.5×10−4)◦, are used to measure

in the diagonal/anti-diagonal basis. Our measurements are limited by the non ideal interferometric
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σi σ j ρ̃t ρ̃c S2(Ŋ[σi,σ j])
theor. S2(Ŋ[σi,σ j])

exp.

σ0 σ0 |1〉 D 1 0.8547 ±0.0006
σ1 |0〉 D 1 0.8718 ±0.0005
σ2 −i |0〉 D 1 0.8792 ±0.0005
σ3 −|1〉 D 1 0.8823 ±0.0005

σ1 σ0 |0〉 D 1 0.8459 ±0.0006
σ1 |1〉 D 1 0.8439 ±0.0007
σ2 −i |1〉 A -1 -0.8434 ±0.0006
σ3 −|0〉 A -1 -0.8540 ±0.0007

σ2 σ0 −i |0〉 D 1 0.8473 ±0.0007
σ1 i |1〉 A -1 -0.8600 ±0.0005
σ2 |1〉 D 1 0.8447 ±0.0006
σ3 i |0〉 A -1 -0.8278 ±0.0008

σ3 σ0 −|1〉 D 1 0.8316 ±0.0006
σ1 |0〉 A -1 -0.8228 ±0.0006
σ2 −i |0〉 A -1 -0.8575 ±0.0006
σ3 |1〉 D 1 0.8780 ±0.0005

Table 5.1: Data used to calculate the Holevo capacity using Eq. 5.13 for the different combina-
tions of unitary operations σi and σ j. ρ̃t and ρ̃c are the output target and control state respectively.
S2(Ŋ[σi,σ j]) is the Stokes parameter obtained by measuring polarization of the control qubit in the
diagonal/anti-diagonal basis after the unitaries σi and σ j. We list both the theoretically expected values,
S2(Ŋ[σi,σ j])

theor., and the experimentally measured values, S2(Ŋ[σi,σ j])
exp. , of this Stokes parameter.

Error bars (1σ ) were calculated by propagation of error on the individual Stokes parameter with
Poissonian counting statistics.

visibility in our switch. We calculate the average visibility from the values mentioned in Table 5.1,

which is 85±2%. This is due to several factors. We use inverting prisms that have relatively coarse

rotation accuracy ±1◦ to perform the unitary operations on the spatial mode. Moreover, each optical

element is not perfectly flat, introducing wavefront distortions that limit the final visibility.

Our experimental setup is adapted from the quantum switch discussed in the previous chapter (Ref.in

addition to the Ref. [13]), removing cylindrical lenses and using only inverting prisms, since only Pauli

operations where necessary, Fig. 5.3. Our input light is diagonally polarized (|ρc〉=(|0〉+|1〉)/
√

2 =D),

and is in the first-order spatial mode (|ρt〉=|1〉=|HG10〉).

We realize the unitary operations {σi} using a pair of rotating prisms [189] as shown in Fig. 5.3. A

mechanical rotation of the inverting prism results in a rotation of the incoming spatial mode of the

photon, the outputs of the combined operation {σi ◦σ j}are shown in Fig. 5.2.

To implement σi,σ j, we use up to two rotating prisms in each arm. Each prism is oriented at a

physical angle θ , which reflects and rotates an incoming beam by 2θ . The action of the rotating prism

on our target qubit subspace is represented by the following unitary operation:

R(θ)=

(
−cos2θ sin2θ

sin2θ cos2θ

)
. (5.14)

We impart the global phase ϕ by a tilted phase plate. We write the transformation performed by the
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Figure 5.2: Predicted spatial mode of target qubit outputs, ρ̃t , after the Pauli operations {σi,σ j} (see
columns 1–3 of Table 5.1). The input target qubit ρt is |1〉=HG10, a first-order Hermite-Gaussian
mode.

Input

PBS1

PBS2

L1L2

L3
DA

DD
σi

σj

R R

R R

H

H

H

H Q

Q

φ

φ

PBS

Coverslip

Pinhole

σ1

Figure 5.3: Schematic of quantum switch. R is the rotating prism 5.14, H and Q are the half and quarter
waveplates respectively and ϕ are the phase plates. The control qubit is the polarization, |ψc〉=D. The
polarization of the light controls order of Pauli operations {σi} acting on the photonic spatial mode
|ψt〉=HG10, for horizontal polarization H, the order is σi◦σ j, for the vertical polarization V the order
is σ j◦σi. The polarization D ensures superposition of the orders. X is a polarization measurement,
determining the Stokes parameter of the measured photon in the diagonal/anti-diagonal basis. Lenses
L1 to L3 form a telescope for mode-matching.

pair of prisms and the phase plate as:

U(ϕ,θ1,θ2)=eiϕ R(θ2)R(θ1). (5.15)

We place the phase plate only when we are doing σ2 operation. For operations, σ1 and σ3 we need
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Unitary ϕ θ1 θ2
σ0 0 π

2
π

2
σ1 0 π

4 –
σ2

π

2
π

2
π

4
σ3 0 π

2 –

Table 5.2: Phases and angles for the unitary operations realized in our experiment, given by Eq. 5.15.

only one rotating prism, and for σ0 and σ2 we need both prisms. We achieve this by moving the second

rotating prism via a translation stage. Table 5.2 are the angles and phases used to implement the Pauli

operations. Since this rotation also changes the polarization of the field—the control qubit—which is

not desired, this rotation is canceled after the two rotating prisms by the actions of the half- (H), and

quarter- (Q) waveplates and the phase plate (φ ), see Fig. 5.3.

We emphasize that in our architecture, the sender cannot access the individual channels—channels

Np or Nq—without using the other one. That is, when we consider combinations of channels where

one of the channels is unitary, this unitary channel cannot be accessed without also going through the

noisy channel. This is certainly not a unique realization of indefinite causal order. For example, one

can use a Sagnac interferometer to achieve the same indefinite causal order as in Ref. [176].

5.3.1 Effects of experimental imperfections

We note, the Pauli operations we are implementing by the rotating prisms, can be non ideal due to

uncertainty of the angles. This can affect the experiment in two ways. First, it leads to non zero S1

and S3 Stokes parameters in the output control qubit and second, these nonzero terms contribute to

Hmin(Ŋ[Np,Nq]). To account for this issue, we note that the uncertainty associated with our rotation

mounts is ±1◦.We numerically introduce random uniformly distributed error of ±1◦ to the angles of

the rotating prisms. We repeat the simulation for 500 iterations and measure the capacity in each run.

We confirm that the contribution of the random errors are well within the range of our experimental

visibilities, which is reflected in the orange shades of the graphs in Figs. 5.4, 5.5, 5.7, and 5.9.

5.4 Results

5.4.1 Two depolarizing channels

Now that we can calculate the output control qubit from Table 5.1, we can use Eq. 5.13 to estimate

the Holevo capacity χ . We compare the experimental and predicted Holevo capacities for several

combinations of channels. We first consider a quantum switch Ŋ[N,N] of two depolarizing channels N

of identical strengths q, i.e., in Eq.5.2 we set all coefficients to q/4:

N=(1−3q/4)ρt+q/4(σ1ρtσ1+σ2ρtσ2+σ3ρtσ3), (5.16)

This scenario was theoretically studied in Ref. [180]. Experimental and predicted Holevo capacities are

shown in Fig. 5.4, which plots the logarithm of χ against increasing q. The red circles are our measured
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Figure 5.4: Logarithm of Holevo capacity χ , of two identical depolarizing channels, vs depolarizing
channel strength, q. The blue line is the predicted Holevo capacity for the case of definite order.
The black line is the predicted Holevo capacity for the case of indefinite order. The red dots are the
measured values for Holevo capacity in our quantum switch; in excellent agreement with the predicted
Holevo capacity for our experimental visibilities 85±2%, shown by the orange shaded area. Note
that the minimum measured Holevo capacity of χ=(2.1±0.2)×10−2 bits occurs at a depolarization
q=0.78, and that higher capacity of χ=(3.4±0.2)×10−2 bits occurs at full depolarization, q=1.

values; the orange shaded region is the predicted Holevo capacity for visibilities of 85±2%; the black

curve is the Holevo capacity for an ideal quantum switch. The blue curve is the ideal Holevo capacity

for two depolarizing channels in some definite order which—as expected— decreases monotonically

with increasing depolarizing strength. In the limit of two fully depolarizing channels, q=1, χ=0

bits are transmitted using definite order. In this limit there is a clear advantage in using quantum

channels: ideally 4.9×10−2 bits can be transmitted, we measure χ=(3.4±0.2)×10−2 bits. This is a

rather counterintuitive result as, individually none of the channels can transmit any information.

This nonzero Holevo capacity can be understood intuitively from the fact that the output of a

quantum switch with two depolarizing channels is a statistical mixture of the output of a quantum

switch with different Pauli operations {σi}. Some of these Pauli operations anti-commute, hence

superpositions of the order of anti-commuting Pauli operations can preserve a finite amount of

information in the target qubit.

This intuition helps us understand another striking prediction, which is that above some nonzero

depolarization strength the Holevo capacity will increase. In the ideal case, we see that Holevo

capacity attains a minimum value of 3.3×10−2 bits at q=0.78 and then the capacity increases to the

limit of 4.9×10−2 bits at q=1, in stark contrast to the classical case of definite causal order which

decreases monotonically to zero. Experimentally, we see this increase in information capacity from

χ=(2.1±0.2)×10−2 bits at q=0.78, i.e., at its worst absolute performance it is 13.5 σ above the

classical performance at that value of q.

We look at Eq. 5.13 to understand this behavior: for low depolarization strengths, the minimum

entropy Hmin(Ŋ[Np,Nq]) increases more rapidly than the von Neumann entropy H(ρ̃c). This means

that for low q, the rate of depolarization of the composite system—target and control—is faster than
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the rate of depolarization of the control qubit. However, at q≈0.78, H(ρ̃c) begins to increase more

rapidly than Hmin(Ŋ[Np,Nq]) so the depolarization rate of the control overtakes the depolarization rate

of the composite system, and the information revival occurs.

q

0
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-2
0 0.5 1

p = 1
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g 2

(

Figure 5.5: Logarithm of Holevo capacity χ , where one channel is a depolarizing channel of varying
strength q, and the other is a σ3 channel, the channel in Eq. (5.17) with p=1. The solid black
line [log2(χ)=0] is the theoretical predictions for Holevo capacity for indefinite causal order. The
orange shade show the uncertainty due to non ideal visibility in our experiment. The red dots are
the experimentally measured data points and the blue line is the theoretical predictions for Holevo
capacity for definite order. We show the special case for p=1, i.e., the dephasing channel becomes a
σ3 channel. Note that in this situation, indefinite causal order allows us to get full 1 bit information.
Experimentally we measure a Holevo capacity of 0.64±0.02 bits at q=1.

5.4.2 Depolarizing and dephasing channel

As a second example we consider the quantum switch Ŋ[N,M] composed of a depolarizing channel N

of strength q (Eq. 5.16) and a dephasing channel M of strength p given by

M=[(1− p)ρt+pσ3ρtσ3]. (5.17)

When q=1, any definite order of these two channels results in a fully depolarizing channel, regardless

of the value of p, thus χ=0. However, with the additional freedom to prepare and measure the control

qubit, the Holevo capacity of these two channels in indefinite order, χ(Ŋ[N,M])≡χi can be non zero

and is a function of p. In fact, this combination achieves the maximum value of 1 bit when p=1

regardless of the depolarization strength q, as shown in Fig. 5.5 (black line). We emphasize the contrast

with the zero capacity of the definitely ordered channels at q=1, Fig. 5.5 (blue line).

This unit Holevo capacity can be understood by noting that when p=1, M is a unitary channel and the

conditional states become:

ε+(ρt)=(q/4)ρt +(1−3q/4)σ3ρtσ3,

ε−(ρt)=q/4(σ1ρtσ1 +σ2ρtσ2).
(5.18)

and thus from Eq. 5.13 χi=1+H(ρ̃c)−Hmin
ρt

[ε+(ρt)⊕ε−(ρt)], where H(·) is again the von Neumann

entropy and the minimisation is done over all possible target states. Notice that the states that
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minimize the entropy of ε+(ρt)⊕ε−(ρt) are the eigenvectors of σ3. Take ρ=|0〉〈0| as an example,

ε+(ρt)=(1−q/2)|0〉〈0|, while ε−(ρt), will be (q/2) |1〉〈1| in which case, H[ε+(ρ)⊕ε−(ρ)] =H(q/2),

and thus the Holevo-capacity of the quantum switch becomes 1 bit 1. We compare our experimental

and predicted χi in Fig. 5.5, red dots are experimental values and the orange shaded regions accounts

for non ideal visibility. For full depolarization at q=1, we show 0.64±0.02 bits compared to the ideal

case of χi=1. Interestingly, this ideal capacity is strictly larger than the one achieved in Ref. [205]

given the same channels in a path superposition. More strongly, in Sec. 5.4.5, we prove that these

channels in a superposition of path cannot lead to unit capacity. We also compare predicted and

experimental χi for other dephasing strengths p in Sec. 5.4.3.

We note that when [180] proposed communication advantage from indefinite causal order they did

not claim that the advantage is unique to coherent superposition of order. Subsequently, there has been

an active discussion on the origin of the communication advantage [198, 206, 207] with consensus yet

to be reached. The experimental developments in the present work and [204] are further motivation to

develop a well-defined resource communication theory featuring coherence.

5.4.3 More general combinations of depolarizing and dephasing channels

Previously we have introduced a combination of depolarizing channel of strength q and a dephasing

channel of strength p as shown in Eq.5.17. We have shown the special case for p=1 where it is possible

to achieve unit Holevo capacity. In this section we show more general situations where p≤ 1. In Fig.

5.6, the black lines show the cases for either p=0.5, p=0.8, or p=1 combined with a depolarizing

channel of strength q in an indefinite order. The blue line shows the capacity when these channels are

in definite order, which regardless of the value of p monotonically decreases to zero when q=1. In

contrast, with indefinite order arrangements the predicted Holevo capacities are 0.31 bits, 0.61 bits and

1 bit for p=0.5, p=0.8 and p=1 respectively. In Fig. 5.7 we plot the logarithm of Holevo capacities

as a function of both depolarizing channel strength q for 2 different strengths of the dephasing channel,

p=0.5, and p=0.8. The black curves on the graphs show the predicted Holevo capacity for the

indefinite order, the orange shade is the uncertainty due to the fringe visibility and the red dots are

experimental data points. In the case of p=0, the dephasing channel behaves as an identity channel

and the input state ρt is equally scrambled in both definite and indefinite order cases, thus resulting

no overall advantage. However, in other cases there is non zero information-theoretic advantage. At

a full depolarizing strength of q=1: in the case of p=0.5, the predicted χi=0.31 bits, whereas we

experimentally show 0.179±0.006 bits; at p=0.8, the predicted χi=0.61 bits, we experimentally show

0.42±0.01 bits.

1This maximum advantage over definite order is also attained by having an indefinite order of one fully depolarizing
channel and a unitary σ2 or σ3 channel, when the input states are the eigenstates of σ2 and σ3, respectively.
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Figure 5.6: Predicted logarithm of Holevo capacity χ for the channels in Eq. 5.17 vs. depolarization
noise strength, q. The solid black lines are for indefinite order in the cases of p=0.5, p=0.8, and p=1.
The solid blue line are for definite order, regardless of the value of p, the combination of the dephasing
and depolarizing channels scramble the information equally. At the full depolarization strength, q=1,
χd=0 whereas χi are 0.31 bits, 0.61 bits, and 1 bit in case of p=0.5, p=0.8, and p=1 respectively.

5.4.4 Bit flip and bit-phase-flip channels

Consider two noisy channels, a bit-flip and a bit-phase-flip channel with strength p given, correspond-

ingly, by
N1

p(ρt)=(1−p)ρt+pσ1ρtσ1,

N2
p(ρt)=(1−p)ρt+pσ2ρtσ2.

(5.19)

Then,
ε+(ρt) = (1−p)2ρt+p(1−p)(σ1ρtσ1+σ2ρtσ2)

ε−(ρt)=p2σ3ρtσ3.
(5.20)

It should be highlighted that the outcome corresponding to the |−〉〈−|, namely the ε−(ρt)/p2 channel,

is actually a purely unitary channel, capable of achieving perfect transmission despite both channels

being noisy (as was also pointed out recently in Ref. [201]). However, here we are interested in the

Holevo capacity resulting from considering both possible outcomes weighted by their corresponding

probabilities, rather than the post-selected ε−(ρt). We solve the corresponding minimization problem

to compute the Holevo capacity. Fig. 5.8 plots the Holevo capacity χ against different noise parameters

p for both the cases of noisy channels in a definite order, and in an indefinite order. The black curve

is the Holevo capacity for indefinite order, while the blue curve is for definite order. As shown by

the difference of these two curves, indefinite order provides an advantage over the definite-order

case. Indefinite order allows transmission of 0.27 bits or more over the whole range of p values. The

minimum capacity of 0.27 bits which occurs at 0.37, is higher than the capacity of the definite-order

case from p=0.2 to p=0.8, 60% of the range of p. The maximum advantage max[(χi−χd)]=0.55

bits occurs at p=0.75, where the Holevo capacity for the quantum switch and definite order cases are

0.75 and 0.19 bits, respectively. We can see there is a knee in the χi at noise parameter p=0.5. This

is because when p≤0.5, the eigenvectors of σ1 or σ2 achieve the minimum entropy Hmin(Ŋ[N1
p,N

2
p]),

while for p≥0.5, the corresponding optimum state turns out to be the eigenvectors of σ3. When p=0.5,



5.4. RESULTS 81

p = 0.5

(a)

lo
g 2

(

(b)

p = 0.8

lo
g 2

(

Figure 5.7: Logarithm of Holevo capacity χ , where one channel is a depolarizing channel of varying
strength q, and the other one is a dephasing channel of strength p. The solid black lines are the
theoretical predictions for Holevo capacity for indefinite causal order. The orange shades show the
uncertainty due to non ideal visibility in our experiment. The red dots are the experimentally measured
data points. (a) shows the case when p=0.5. In this case the ideal value is χi=0.31 bits whereas we
experimentally measure 0.179±0.006 bits. (b) is the case when p=0.8. Here, the χi is 0.61 bits and
we measure 0.42±0.01 bits.

where the classical order results in full depolarization, the capacity resulting from indefinite order is

χi≈0.31 bits. In this case, any of the eigenstates of the Pauli operator achieves the maximum capacity

thus increasing the domain over which we can optimally encode the input.

5.4.5 Holevo capacity from path superposition

Although the advantage in communication is not unique to superposition of order, there is strong reason

to believe that the perfect transmission discussed above is not possible via a superposition of paths,

where we place two noisy channels in two arms of an interferometer [205]. The optimized Holevo

capacity that we obtain for a fully depolarizing channel and a unitary channel in path superposition is

0.75 bits. Moreover, we prove that reaching a value of 1 bit is impossible:

In our communication task, we consider the target system, the control system and two Pauli channels

to transfer the target qubit. The control enables the target to go through a superposition of paths. In our
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Figure 5.8: Predicted Holevo capacity χ for the channels in Eq. 5.19 vs noise parameter, p. The solid
black line is the Holevo capacity of depolarizing channels in indefinite order and the solid blue line
is for the case of definite order. We observe a knee at p=0.5, this is because the optimum state for
p≤0.5 are the eigenvectors of the operator σ1 and σ2. On the other hand, for p≥0.5 the optimum state
is the eigenvector of σ3. At p=0.5, the definite-ordered channel becomes completely depolarizing,
making χd = 0, whereas at this point χi = 0.31 bits. In the region of p≥0.5, the maximum difference
between the two cases is 0.55 bits, occurring when p=0.75. The black horizontal dashed line denotes
the minimum capacity of the indefinite-ordered case, 0.27 bits when p=0.37.

(c)
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p

Figure 5.9: Experimental Holevo capacity χ for p≥0.5 region. where one channel is a bit-flip channel
and the other one is a dephasing channel with varying strength p as in the Eq. 5.19. The solid black
line is the theoretical predictions for Holevo capacity for indefinite causal order. The blue line is the
theoretical prediction for Holevo capacity for definite causal order. The red dots are the experimental
data points and the orange shade is the expected range due to non ideal visibility. At p=0.5, the
experimentally measured Holevo capacity is 0.179±0.006 bits, whereas χd=0.

experiment, |ψc〉 is set to be |+〉, the target state is optimized to achieve the maximum communication

capacity, and a generalized measurement on the control system is applied after noisy channels.

We consider our Pauli channels to be the depolarizing channel, N, as shown in Eq. 5.16, and σ3.

Following [205], after tracing out the environment, the output control and target state takes the
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following form:

ρ
(ct)
tot =

1
2

(
|0〉〈0|c⊗N(ρt)+ |1〉〈1|c⊗σ3ρtσ3 (5.21)

+ |0〉〈1|c⊗T0ρtσ3 + |1〉〈0|c⊗σ3ρtT
†

0

)
where T0=∑i eiKi, Ki are arbitrary choices for Kraus operators for the depolarizing channel with

the constraint ∑i |ei|2=1. Exploiting the unitary freedom in the operator-sum representation (see

for example Ref. [22]), one has that eiKi=ei ∑ j Ui, j
σ j
2 , with Ui, j the entries of a unitary matrix, and

thus T0=∑ j(∑i eiUi, j)
σ j
2 ≡ ∑ j f jσ j/2, with ∑ j | f j|2 = 1. Now if we measure the control qubit in the

{M+,M−} basis ,
M+=cosα|0〉+ sinα|1〉,
M−=− sinα|0〉+ cosα|1〉,

(5.22)

the two possible output states, with corresponding probabilities p+ and p−, are given by

p+ρ
t
+ =

1
4
[cos2

α
σ0

2
+ sin2

ασ3ρtσ3

+
cosα sinα

2 ∑
i
( fiσiρtσ3 + f ∗i σ3ρtσi)],

p−ρ
t
−=

1
4
[sin2

α
σ0

2
+ cos2

ασ3ρtσ3 (5.23)

− cosα sinα

2 ∑
i
( fiσiρtσ3 + f ∗i σ3ρtσi)].

where f ∗i is the complex conjugate of fi.

Now, achieving a unit Holevo capacity implies that both the input and output state must be pure. In

the Bloch representation, this implies that

∑
i
|r(+)

i |
2=1, (5.24)

∑
i
|r(−)i |

2=1, (5.25)

∑
i
|r(in)i |

2=1 (5.26)

where {r(+)
i }, {r

(−)
i } and {r(in)i } are the Bloch vector components of the projected states ρ t

+, ρ t
− and

the input target state, ρt respectively. We proceed by writing fi into its real and imaginary parts, i.e.,

f j= f j,R + i f j,I . Then, from ∑ |r(+)
i |2=∑ |r(−)i |2 we find that

sin2α (r(in)3 f0,R + f3,R + r(in)1 f2,I− r(in)2 f1,I)+ cos2α=0 (5.27)

which can be replaced into ∑ |r(+)
i |2 +∑ |r(−)i |2=2 to obtain

sin2 2α [(r(in)2 f0,I− r(in)3 f1,R + r(in)1 f3,R + f2,I)
2 +(r(in)1 f0,I + r(in)3 f2,R + f1,I− r(in)2 f3,R)

2

+( f0,R + r(in)1 f1,R + r(in)2 f2,R + r(in)3 f3,R)
2]+ cos4α=2 (5.28)
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Next we proceed to show that, Eq. 5.28 cannot hold under conditions 5.26 and ∑i | fi|2=∑i ∑k∈{R,I} fi,k
2=1.

Note that for this purpose, it is sufficient to prove that

F(r, f ) = (r(in)2 f0,I− r(in)3 f1,R + r(in)1 f3,R + f2,I)
2

+(r(in)1 f0,I + r(in)3 f2,R + f1,I− r(in)2 f3,R)
2

+( f0,R + r(in)1 f1,R + r(in)2 f2,R + r(in)3 f3,R)
2 < 3.

(5.29)

Exploiting the relation that 2xy≤ x2+y2 for any real x and y, Eq. 5.26, and that for that for |ri| ≤ 1

one has that ri ≤ |ri| and |ri|2 ≤ |r1|, we have

F(r, f ) ≤ (1+ r(in)1 + r(in)2 + |r(in)3 |2) f 2
0,I +(1+ r(in)1 + r(in)2 + r(in)3 )( f 2

0,R + f 2
1,I + f 2

2,I + f 2
3,R)

+(1+ r(in)1 + |r(in)2 |2 + r(in)3 ) f 2
1,R +(1+ |r(in)1 |2 + r(in)2 + r(in)3 ) f 2

2,R

≤ (1+ |r(in)1 |+ |r
(in)
2 |+ |r

(in)
3 |)∑i | fi|2

≤ 1+
√

3∑i |r
(in)
i |2

≤ 1+
√

3 < 3,
(5.30)

as desired. This supports the idea that N and a unitary channel in a superposition of paths cannot

lead to a pure output and thus cannot achieve unit Holevo capacity.

5.5 Conclusion

Quantum mechanics allows indefinite causal order, which allows us to communicate up to 1 (0.049)

bits of information through one (two) fully depolarizing channels. This is possibly useful for communi-

cation through turbid media: there have been proposals for quantum communication protocols using a

Sagnac interferometer (see Ref. [208] for a review) reminiscent of the quantum switch implementation

of Wei et al. [176]. We can imagine a situation where one arm of the Sagnac loop consists of a unitary

channel in the laboratory and the other arm goes through the atmosphere, e.g., ground-satellite-ground

path. Placing these channels in indefinite causal order will enable to transmission of qudits in the

transverse spatial mode even though the atmosphere is naturally noisy for these qudits. We can also

use this idea for secret sharing, where a specific combination of channels, when connected indefinitely,

can transfer information between two parties, but in a scenario of eavesdropping, any intervention

will break the “indefiniteness," and the message will remain scrambled. We can also think of imaging

through scattering media where the information being communicated is in the modulation of the spatial

mode, e.g., imaging through skin. In all these cases, placing the noisy channel in indefinite causal

order with a clean channel will provide information that would normally be entirely lost.
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A, 103, 042606 (2021).

See Section 6.8 for a breakdown of the author contribution.

6.1 Introduction

One of the key questions in quantum information is the rate at which a quantum channel can transmit

classical information, as quantified by the classical capacity of the channel [52,209]. Holevo’s seminal

result [59], and following work [68, 210], provide upper bounds on the classical capacity, showing that

each qubit can communicate at most one bit of classical information.

In a typical quantum communication protocol, the parties act in a fixed order. However, more

general situations are possible, where causal order might be uncertain or even not defined. A practical

example can be a distributed system, such as the internet, where different nodes communicate with each

other. In such systems, local clocks can suffer from random errors and delays, leading to uncertainty

in the ordering of the events [211]. Even more radically, recent developments have shown possibilities

of indefinite causal structure, i.e., scenarios where the lack of order between the parties cannot be

reduced to classical ignorance [5, 7]. From a foundational point of view, this is relevant, for example,

in quantum gravity scenarios, where quantum superposition of spacetimes can result in an indefinite

causal order of events [171, 172, 212]. Pragmatically, quantum control of causal order has been

proposed as a resource for computation and communication [5, 173–175, 201, 202, 213–216], with

several experimental implementations already performed [13, 14, 176, 177, 184, 217, 218].

In light of the foundational and applied relevance, it is important to understand how general

quantum causal structure affects classical communication. In particular, given the possibility to violate

causal inequalities [7, 203, 219, 220] and the advantage in certain communication tasks [174, 175, 214],
87
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one may wonder whether an indefinite causal structure can augment the classical communication

capacity and possibly exceed the Holevo bound [68, 210]. However, despite much work on various

communication protocols, the notion of classical capacities in situations where the communicating

parties themselves are indefinitely ordered has not yet been developed. One of the challenges is the fact

that the definition of capacity involves asymptotically many independent uses of the communication

resource but for indefinite causal order, the notion of repeated use turns out to be problematic [206,221].

We address this gap through the process matrix formalism [7]. We introduce an asymptotic

setting appropriate to a communication scenario without pre-defined causal order. This allows us to

develop expressions for the asymptotic capacity of a process, under different encoding and decoding

settings, reducing to analogue expressions for quantum channels. We find that, in each case, the

classical communication from a sender to a receiver cannot exceed what is achievable in a definite

causal order. In particular, the Holevo bound extends to general processes: the classical capacity

cannot exceed one bit per received qubit. This despite the fact that, unlike in conventional channels,

the receiver has access to an output system that can signal back to the sender, which constitutes

an extra communication resource (for example, for the violation of causal inequalities). We also

explore two-party communication protocols when causal order is definite but unknown (probabilistic).

In such situations, the total bi-directional communication cannot exceed the maximum one-way

communication—again, at most one bit per qubit in either direction. This extends to a similar bound

for communication between multiple parties in a definite (but possibly probabilistic) causal order.

We present the work following way. In Section 6.2, we give an introduction to classical communi-

cation through quantum channels. In Section 6.3, we introduce the framework of the process matrix.

In Section 6.4, we give a brief motivation behind our communication settings. In Section 6.5, we

introduce asymptotic setting for processes, subsequently we define classical capacities of a process, and

developed a bound for one way communication. In Section 6.6 we develop a bound for bi-directional

communication protocol. We then generalise the bound for a multi-party broadcast communication

protocol.

6.2 Classical communication through a quantum channel

Let us first review how one can use ordinary quantum channels to send classical information [52, 222].

In a one-way communication protocol, Alice has a classical message m, prepared according to some

probability distribution P(m), and encodes it into a quantum state ρm. She then sends it to Bob

through a noisy quantum channel N. Upon receiving the state, Bob extracts the message by using a

positive operator valued measure (POVM) {Em′}m′ , where Em′ ≥ 0, ∑m′ Em′ = 1. Here m′ denotes the

measurement outcome. The conditional probability of Bob receiving a message m′ given that Alice

sends the message m is

p(m′|m) = Tr [Em′N (ρm)] . (6.1)
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The probability of error for a particular message m is

pe(m) = p(m′ 6=m|m) = 1− p(m|m). (6.2)

The goal of the protocol is to minimise the maximal probability of error p∗e := maxm pe(m). An

asymptotic setting is a scenario where Alice can use n copies of the channel to send a k-bit message

m∈ {0,1}k, where both k and n can be arbitrarily large. In other words, she encodes k bits into an n≥ k

-bit message X (n)
m ∈ {0,1}n and subsequently an n-qubit state ρ

(n)
m and then sends each qubit through

an independent copy of the channel. The classical capacity of the quantum channel N, is defined as

the maximal rate C = k/n such that asymptotically, n→ ∞, one can achieve noiseless communication,

p∗e → 0 [39, 52].

Different encoding and decoding strategies can lead to different asymptotic settings resulting in

different classical communication capacities for a channel N, which we review below. A quantification

of classical communication possible through a channel N is given by the Holevo quantity [59], defined

as

χ(N) := max
p(m),ρm

S
(
∑ p(m)N(ρm)

)
−∑ p(m)S (N(ρm)) . (6.3)

Here S(.) is the von Neumann entropy. Having introduced the Holevo quantity for a channel, it is

interesting to see how this quantity is related to different classical capacities corresponding to different

asymptotic configurations of channels. We discuss it below.

Product encoding - Product decoding: When the input quantum state is a product state of

the form ρ
(n)
m =⊗n

i=1 ρi and the measurement operation is E(n)
m′ =⊗

n
i=1 Ei with each Ei acting on

the qubit N(ρi). Let us consider, the measurement result produces an n-bit string Y (n)
m′ ∈ {0,1}

n

corresponding to the message m′. In the asymptotic setting, n→∞, the capacity in this setup is

given by the conventional definition of classical capacity obtained by maximising the regularised

mutual information, I(Y (n)
m′ :X (n)

m )/n, between Alice’s input and Bob’s output over the input probability

distribution, the encoded quantum states and decoding measurement operators. The central idea

of Shannon’s capacity formula is that the mutual information I(Y (n)
m′ :X (n)

m ) is additive. Thus, the

corresponding capacity is called product capacity, C(1)(N). This capacity is determined by the single

use of the channel N, with the optimised mutual information I(Y (1)
m′ :X (1)

m ), corresponding to the

single-copy input and output variables X (1)
m and Y (1)

m′ respectively, i.e.

C(1)(N) = lim
n→∞

max
p(m),ρ

(n)
m ,E(n)

m′

I(Y (n)
m′ :X (n)

m )

n

= max
p(m),ρ

(1)
m ,E(1)

m′

I(Y (1)
m′ :X (1)

m ). (6.4)
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Holevo’s theorem [59] states that this quantity is upper bounded by

C(1)(N)≤ χ(N), (6.5)

with the χ(N) defined in Eq. (6.3). Hereinafter, for the sake of clarity, we are going to represent

I(Y (1)
m′ :X (1)

m ) with I(m′:m).

Product encoding - Joint decoding: The difference with the previous case is that Bob can perform

a joint measurement on the n-qubit system. The Holevo-Schumacher-Westmoreland (HSW) capacity,

C(N), associated with this strategy is simply equal to the Holevo quantity [68, 210]:

C(N)=χ(N), (6.6)

It is worth mentioning that the HSW capacity for some channels can be strictly greater than one shot

capacity, i.e. C(N)>C(1)(N), this is also known as super-additivity.

Joint encoding–Joint decoding: Here, Alice uses an entangled n-qubit state to encode the

information and Bob performs a joint measurement on his output. The capacity associated with this

strategy is given by regularised Holevo quantity [59, 68, 210]:

C∞(N)=χreg(N), (6.7)

with

χreg(N)= lim
n→∞

χ(N⊗n)

n
. (6.8)

It has been shown in [72] that the capacity C∞(N) can be strictly greater than the HSW capacity —

C∞(N)>C(N). Thus in general, we can write C∞(N)≥C(N)≥C(1)(N).

The Holevo quantity χ(N), and consequently the regularised Holevo quantity χreg(N), are further

upper bounded by log(d), where d is the output dimension of the channel N. With this we summarise

a sequence of inequalities:

I(m′:m)≤C(1)(N)≤C(N) = χ(N)

≤C∞(N) = χreg(N)≤ log(d), (6.9)

with I(m′:m) being the unoptimized mutual information between Alice’s input m and Bob’s output m′.

A consequence of this chain of inequalities is that, for any communication setting, a d dimensional

quantum channel cannot transfer more than log(d) bits. In other words, quantum systems can carry at

most one bit per qubit.

6.3 The Process framework

In conventional quantum communication protocols, the communicating parties act in a well-defined

order. However, quantum mechanics allows possibilities, where the order between the communicating

parties is unknown or even indefinite [5, 171]. This possibility can be modelled within the so-called
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process matrix formalism [7, 154, 181], which we have described in Chapter 2 of this thesis. To

maintain the flow, I will briefly recapitulate the process formalism here. Consider a situation involving

two parties — Alice and Bob, each acting in a local laboratory. In each run of the experiment, each of

them receives a quantum system in their respective laboratories, performs some operation on it and

sends it out [223]; Alice’s (Bob’s) input and output systems will be denoted by AI (BI) and AO (BO),

respectively. Most generally, each party’s operation consists in letting the system of interest interact

with an additional “probe” system. The parties can use their probes to input information (by preparing

them in arbitrary states) and to extract information, through arbitrary measurements. The most general

operation is, therefore, a completely positive (CP) map M : XI⊗X ′I→XO⊗X ′O, where, for X = A,B;

X ′I ,X
′
O denote the additional system and we use the system’s label to represent the corresponding state

space.

It is convenient to represent CP maps as positive semidefinite matrices, M∈XI⊗X ′I⊗XO⊗X ′O, using

the Choi isomorphism [32]:

MXIX ′I XOX ′O =

dXI dX ′I

∑
i, j=1
|i〉〈 j|XIX ′I ⊗M(|i〉〈 j|XIX ′I ). (6.10)

Here, the set {|i〉} represents an orthonormal basis in XI⊗X ′I and dX represents the dimension of X . If

the map M is completely positive and trace preserving (CPTP), then the Choi representation gives an

additional constraint

TrXOX ′O
MXIX ′I XOX ′O = 1XIX ′I . (6.11)

A CPTP map (also called channel) represents an operation that can be performed with probability one,

while a CP, trace non-increasing map generally is the conditional transformation corresponding to a

particular outcome of a measurement.

The resource connecting the two communicating parties is described by the process matrix

W AIAOBIBO . This encodes the background process that governs how the systems on which the parties

act relate to each other, be it a shared state, a channel from one to the other, or more general scenarios.

We can view the process as a higher order map, transforming input quantum maps (the local operations)

to output quantum maps (a channel acting on the probe system). The process matrix W has to satisfy a

set of constraints:

W ≥ 0, (6.12)

TrW = dAOdBO, (6.13)

BIBOW =AOBIBO W, (6.14)

AIAOW =BOAIAO W, (6.15)

W =AO W +BO W −AOBO W. (6.16)

Here, xW := 1x/dx⊗TrxW is the ‘trace-and-replace’ notation [181], which discards subsystem x and

replaces it with the normalised identity. Here appropriate reordering of the tensor factors is implied.
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=W

Figure 6.1: A process W AIAOBIBO with two CPTP maps AA′IAIAO and BBIBOB′O forms a new channel
N(A,B,W ), as in Eq. (5.2), with input system A′I and the output system B′O. Alice can use this channel
to communicate to Bob by encoding the quantum state ρm at her input system and Bob performing a
POVM measurement Em′ at his output system.

To compose two CP maps, as well as a CP map and the process, we use the link product, denoted

by ‘*’ [6]. For two positive semidefinite operators P and Q with the respective Hilbert spaces P and Q,

the composition P∗Q is given as

P∗Q := TrP∩Q[(1P\Q⊗PTP∩Q)(Q⊗1Q\P)]. (6.17)

Here, P and Q are the Hilbert spaces associated with P and Q, the superscript ‘TP∩Q’ represents partial

transpose on the shared Hilbert spaces. Note if the operators do not share Hilbert spaces, P∩Q= /0, then

the link product reduces to the tensor product, P∗Q=P⊗Q. In contrast, when the operators do not have

any non-overlapping spaces, P\Q∪Q\P= /0, the link product yields a scalar number: P∗Q=Tr(PT Q).

The link product generalises the state transformation, composition of channels, and state-measurement;

a state ρ transformed by a channel N is given by N(ρ)=ρ∗N, where N is the Choi representation

of N. A sequential composition M1◦M2 : X1→X3, with the Choi representation MX1X3
3 is given by

MX1X3
3 =MX1X2

1 ∗MX2X3
2 . Here we assume the constituent channels to be M1 : X1→X2 and M2 : X2→X3

with the Choi representations M1 and M2 respectively. Finally, we can rewrite the state-measurement

in Eq. (6.1) as p(m′|m)=ET
m′ ∗N(ρm)=ET

m′ ∗ρm ∗N. Note that the Choi representation of a POVM-

element Em′ is its transpose ET
m′ .

The link product also captures the action of the process on the local operations. In our case, the

action of W on Alice’s and Bob’s local operations MA, and MB is given by (MA ∗MB)∗W . Here MA

(MB) is the Choi representation of the map MA (MB).

6.4 Motivation

Before exploring communication protocols through the higher order process, it is important to dis-

tinguish between the communication setup introduced in Chapter 5 and the one we are using in the

current chapter. We clarify the distinction in Fig. 6.2, where Fig. 6.2(a) demonstrates a scenario
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Figure 6.2: Different communication setups. Fig.(a) represents a communication through the quantum
switch as discussed in Chapter 5. In this chapter, I take a different approach:Fig.(b); and (c). Here
the communicating parties are in an indefinite order. I consider a bi-partite process W which lacks, in
general, a fixed causal order. Fig.(b) is a one-way communication protocol (Sec.6.5). In a one-way
communication, the sender encodes a classical message m in a quantum state ρm, and then through
a CPTP map A, sends it the process W . The receiver receives the quantum system through a CPTP
map B, and applies a POVM-element Em′ to extract the message m′. Fig.(c) is the bi-directional
communication protocol as described in Sec.6.6. The messages m and k are sent and messages m′ and
k′ are received. In this case, the operations A and B are CP maps.

of communication through the quantum switch, with two noisy channels in indefinite causal order.

However, In case of the quantum switch, the communicating parties have a fixed causal order, i.e.

the sender causally precedes the receiver. In this chapter, we are not restricting ourselves to the

quantum switch by considering the most general higher order process. More importantly, we allow the

communicating parties to be in an indefinite causal order, see Fig. 6.2(b) for one-way communication

and Fig. 6.2(c) for a bi-directional communication. The motivation behind this setup comes from the

possibility to violate causal inequalities [7, 203, 219, 220] described as follows:

6.4.1 Causal inequality

Let us assume a a scenario where two parties, sharing an indefinitely causal ordered process, are

involved in a bi-directional communication [7]. We show this in Fig. 6.2(c) where the messages m

and k are received and m′, k′ are sent. Additionally, Bob possess a classical bit b. If b=0, Alice has

to guess Bob’s message, and if b=1, Bob has to guess Alice’s message. The goal of the game is to

maximise the probability of success:

psucc:=
1
2
[p(k′=k|b = 0)+p(m′=m|b = 1)]. (6.18)
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In Ref. [7], it has been shown that when the communicating parties are causally ordered, the probability

of success is bounded by

psucc≤
3
4
. (6.19)

We refer this bound as causal inequality. However, when we consider a particular causally non-

separable process given by

W AIAOBIBO=
1
4
[1AIAOBIBO+

1√
2
(σAO

z σ
BI
z +σ

AI
z σ

BI
x σ

BO
z )]. (6.20)

Here, for the sake of convenience, we drop the tensor products and identity operations. The local

operations on the other hand are as follows: Bob adopts the following protocol. If he wants to read

Alice’s bit (b=1), he measures the incoming qubit in the σz basis and assigns m′ = 0, m′ = 1 to the

outcomes |0〉, |1〉 respectively. On the other hand, if he wants to send his bit (b = 0), he measures his

qubit in the σx basis, if the outcome is |+〉, he encodes k as 0→|0〉, 1→|1〉, whereas if the outcome is

|−〉, he encodes it as 0→|1〉, 1→|0〉. Together with the local operations and the background process as

in Eq. (6.20), we can violate the causal inequality with

psucc=(2+
√

2 )/4>3/4. (6.21)

In Refs. [224, 225] it has been shown that the above probability of success is the maximum possible

violation for all causally separable processes. To conclude, we observe violation of causal inequality,

which is a classical communication task, is possible with the indefinite causal order. Hence, it is

interesting to attribute different information theoretical models, e.g., classical capacity of different

asymptotic settings, to such higher-order processes. Motivated by this goal, in the next section, we

present one-way communication through processes.

6.5 One-directional communication through an indefinitely or-

dered process

In this section we introduce our classical communication protocol through an arbitrary process, as

shown in Fig. 6.1. In this protocol, both Alice and Bob can use some quantum channels A and B.

Alice’s channel A has A′IAI as input and AO as output, while Bob’s channel B has BI as input and

BOB′O as output.

The process matrix W AIAOBIBO acting on these channels forms a new quantum channel N(A,B,W )

with input quantum system A′I and the output quantum system B′O, as shown in Fig. 6.1. The Choi

representation of this new channel is

N(A,B,W )A′IB
′
O

:=(AA′IAIAO ∗BBIBOB′O)∗W AIAOBIBO

=
(
AA′IAIAO⊗BBIBOB′O

)
∗W AIAOBIBO. (6.22)
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Here, A and B are the Choi representations of the quantum channels A and B respectively.

It is worth stressing that turning a process into a channel does not yet provide an estimate of the

communication capacity. This is because the channel’s input and output, A′I and B′O, can have arbitrary

dimensions, which, in principle, could encode an arbitrary amount of information. For example, Bob

could have a single-qubit BI and BO and a two-qubit B′O. One of the two qubits is simply BI , while the

other can be a qubit entangled with BO (that is to say, he sends through his output part of an entangled

state while measuring the other part together with BI). For a process with indefinite causal order, Bob’s

output is not discarded, and one could expect that the correlations between BO and Alice’s systems

could allow her to encode two bits into B′O, exceeding the Holevo bound. As we will see, this is in fact

not possible, as the receiver’s output turns out to be useless in a one-way communication scenario,

even for processes with indefinite causal order. Before we can get to this, however, we have to define

appropriate asymptotic settings for general processes.

6.5.1 Asymptotic setting

Similar to the conventional classical communication through quantum channels, we need to introduce a

notion of asymptotic setting for process, namely to formalise the notion of repeated use of independent

copies of a process. The goal turns out to be non-trivial as one can construct asymptotic settings by

allowing joint local operations across different copies of processes [206, 221], resulting in non-trivial

constraints on the admissible operations and processes [226, 227]. For example, Alice could feed the

output of her first channel to her second one. This, however, would require extra knowledge about

the causal relations between the different uses of the process and, for a process with bidirectional

signalling, it would be incompatible with Bob sending his second output to the first input. As we

are investigating causal structures as communication resources, we assume that all available causal

relations are encoded in the process itself, which leads to the asymptotic setting, first introduced in

Ref. [228], where only product operations across different parties are allowed.

Our choice of asymptotic setting results in a set of independent channels N j =N(A j,B j,W ), as

shown in Fig. 6.5. Here A j, B j are the local operations performed by Alice and Bob respectively.

Alice encodes her message m in a quantum state ρ
(n)
m ∈⊗n

j=1 A
′ j
I and sends the state to Bob through

the channels {N j}. After receiving the transformed state, Bob performs a POVM on his quantum

system ⊗n
j=1B

′ j
O. With this, we conceptualise a protocol for one way communication from Alice to

Bob (A→B) in the following way:

Definition 1. Given a bipartite processes matrix W AB, we define an A→B protocol with n uses of W

as

1. A set of local operations {A j,B j}n
j=1, where

A j : A
′ j
I ⊗A j

I→A j
O,

B j : B j
I → B j

O⊗B
′ j
O

are CPTP maps;
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2. A state encoding m 7→ ρ
(n)
m ∈

⊗n
j=1 A

′ j
I , where ρ

(n)
m ≥ 0 and Trρ

(n)
m = 1;

3. A decoding POVM {E(n)
m′ }m′ , where E(n)

m′ ≥ 0 and ∑m′ E
(n)
m′ = 1.

Such a protocol produces a classical channel described by the conditional probabilities

P(m′|m) = Tr

[
E(n)

m′

n⊗
j=1

N j
(
ρ
(n)
m
)]

. (6.23)

We say that two protocols for the same process W are equivalent if they produce the same conditional

probabilities P(m′|m).

In general, the ancillary spaces A
′ j
I , B

′ j
O need not be isomorphic for different j. However, we can

always embed each of them into a space isomorphic to one of the highest dimension. In the following,

we assume that all spaces are of equal dimension and are identified through a choice of canonical basis.

Note that when we consider multiple copies of processes, in general, the local CPTP maps of

Alice and Bob need not be identical. Thus the asymptotic setting of quantum process results in

multiple copies of different channels, also known as non-stationary asymptotic setting. Formulating

communication capacity of such a setup poses a non-trivial challenge [229,230]. To alleviate this issue,

we employ a scheme to make the channels stationary. Specifically, we replace the local operations

{A j} and {B j} with fixed local operations {A} and {B} respectively with support of additional local

CPTP maps E j and F j, where A j=A∗E j and B j=F j∗B. Thus we have multiple independent and

identical copies of the channel N=N(A,B,W ). Feasibility of this approach is due to the fact that, in

an A→ B protocol, Bob’s output system BO can be discarded, i.e., in such a protocol a process matrix

W can be replaced by BOW , as shown in Fig. 6.3 and in Refs. [4, 5, 7, 231]. As we are going to use this

fact multiple times, we formulate it as a lemma and prove it below for completeness:

Lemma 1. If Alice has trivial ancillary output (dA′O
=1), i.e., A : A′I⊗AI → AO, we can replace W

with BOW:

N(A,B,W ) =N(A,B,BOW ). (6.24)

Proof. It is sufficient to show A∗W = A∗BOW . Using condition (6.16), we can write A∗W = A∗AOW +

A∗BOW −A∗AOBOW . As the second and third terms are already in the desired form, we only need to

look at the first term:

A∗AOW = TrAIAO

[
AA′IAIAO ·

(
1AO

dA
O
⊗TrAO W

)]
=

1
dA

O
TrAI

[(
TrAO AA′IAIAO

)
· (TrAO W )

]
=

1
dA

O
TrAI

[
1A′IAI · (TrAO W )

]
=

1A′I

dA
O
⊗TrAIAO W =

1A′I

dA
O
⊗TrAIAO (BOW ) , (6.25)

where we used TrAO AA′IAIAO = 1A′IAI (because AA′IAIAO is CPTP) in the third line and Eq. (6.15) in the

last line.
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W = W =

Figure 6.3: Pictorial depiction of Lemma 1. A one way communication from Alice to Bob through
a channel N(A,B,W ) simplifies to a channel N(A,B,BO W ). The rightmost picture shows further
simplification to a quantum state Γ(Am,W ) with the system BO being discarded, as in Eq. (6.43).

This lemma allows us to replace Bob’s operation B j by σBO⊗
(

TrBO B j
)BIB′O , with σBO being an

arbitrary state. For the encoding operation A j, on the other hand, we extend the input system to make

it a controlled operation while treating the control state as Alice’s extended encoded message. Thus

we present the following theorem.

Theorem 1. Every A→ B protocol is equivalent to one with fixed local operations

Ā : A
′′ j
I ⊗A j

I → A j
O, (6.26)

B̄ : B j
I → B j

O⊗B
′′ j
O , (6.27)

state encoding

ρ̄
(n)
m =

n⊗
j=1

E j

(
ρ
(n)
m

)
, (6.28)

and decoding POVM

Ē(n)
m′ =

n⊗
j=1

F†
j (E

(n)
m′ ), (6.29)

where E j:A
′ j
I →A

′′ j
I , F j:B

′ j
O→B

′′ j
O are CPTP and F† denotes the Hilbert-Schimdt adjoint, defined through

Tr
[
A†F(B)

]
= Tr

[
F† (A†)B

]
.

Proof. (See Fig. 6.4 for a pictorial representation of the proof.) Let us start with the decoding. Since

Alice only performs CPTP maps with no ancillary output, we can apply Lemma 1 and replace the

process matrix W with BOW , which is equal to identity on BO. This implies that any A→ B protocol is

equivalent to one where we replace the local operations B j with σ
B j

O⊗TrB j
O
B j for some arbitrary state

σ . Choosing the space B
′′ j
O isomorphic to B j

I , we see that the original combination of local operations

B j and decoding POVM is equivalent to performing the fixed operation B̄= σ
B j

O⊗ IB j
I→B

′′ j
O in each

lab, and decoding POVM as in Eq. (6.29), with F j = (TrB j
O
B j ◦ IB j

I→B
′′ j
O )B

′ j
O .
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=W W

Figure 6.4: Pictorial depiction of Theorem 1. We convert a non-stationary channel N(A j,B j,W ) to a
stationary channel N(Ā,B̄,W ). Due to Lemma 1, Bob’s system BO can be set to a fixed state σ and

corresponding operation B̄= σ
B j

O⊗ IB j
I→B

′′ j
O . Alice’s operation, on the other hand, can be extended to

a controlled CPTP map Ā as described in Eq. (6.31).

Now for the encoding side: we set A
′′ j
I =X j⊗A

′ j
I and define the controlled operation Ā : X j⊗A

′ j
I →

A j
O as

Ā(σ ⊗ρ) =
n

∑
j=1
〈 j|σ | j〉A j (ρ)

A j
O , (6.30)

Here, each X j is a state space isomorphic to the operator space L(Cn). The operation Ā is manifestly

CPTP. For canonical basis states in X j, this map gives

Ā(| j〉〈 j|⊗ρ) =A j (ρ) , (6.31)

so the choice of local operation can be encoded into a choice of initial state, expanding the original

encoding state as in Eq. (6.28), with the maps E j : A
′ j
O→ A

′′ j
O defined as

E j

(
ρ

A
′ j
I

)
=
(
| j〉〈 j|⊗ρ

)A
′′ j
I . (6.32)

The relevance of this theorem is twofold. First, it shows that any protocol involving a different

choice of local operations can be reproduced by fixing the local operations once and for all. This

means that an asymptotic setting for processes can always be mapped to an asymptotic setting were

the same channel is used n times, N(Ā,B̄,W )⊗n. We call a protocol of this type stationary. Second,

state encoding and decoding POVM of an arbitrary protocol transform into those of a stationary one

through product maps, Eqs. (6.28) and (6.29). This means that the transformation preserves the nature

of the asymptotic setting, viz. joint/product encoding or decoding. From now on, we will represent Ā,

B̄, ρ̄
(n)
m and Ē(n)

m′ without the bar on top.

6.5.2 Classical capacities of a quantum process

Holevo quantity for a process: Having introduced a stationary protocol with an asymptotic setting of

the channel N(A,B,W ), as shown in Theorem 1, we can define the corresponding Holevo quantity for
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a process W as

χ(W )A→B := max
A,B

χ [N(A,B,W )] . (6.33)

We also introduce the n-th extension χ(W⊗n)A→B of the above quantity as

χ(W⊗n)A→B := max
A,B

χ
[
N(A,B,W )⊗n] . (6.34)

Communication capacity for a process: We can associate different communication capacities to an

arbitrary process as

C](W )A→B = max
A,B

C] (N(A,B,W )) . (6.35)

Where C] =C(1),C,C∞. Here C(1)(W )A→B represents product encoding-product decoding capacity, as

in Eq. (6.4), C(W )A→B represents product encoding-joint decoding capacity, as in Eq. (6.6) and finally,

C∞(W )A→B represents joint encoding-joint decoding capacity, as in Eq. (6.8).

We can relate the Holevo quantity for a process to different C](W )A→B capacities. We show this in

the following lemma.

Lemma 2. Different capacities associated with an arbitrary process W are related to the Holevo

quantity χ(W )A→B in the following way.

product encoding-product decoding:

C(1)(W )A→B ≤ χ(W )A→B. (6.36)

product encoding-joint decoding:

C(W )A→B = χ(W )A→B. (6.37)

Joint encoding-joint decoding:

C∞(W )A→B = lim
n→∞

χ(W⊗n)

n
. (6.38)

Proof. product encoding-product decoding:

Using Eqs. (6.35), (6.5) and (6.33), we can write

C(1)(W )A→B = max
A,B

C(1)(N(A,B,W ))

≤max
A,B

χ(N(A,B,W ))

= χ(W )A→B. (6.39)

product encoding-joint decoding:

Using Eqs. (6.35), (6.6) and (6.33) we can write

C(W )A→B = max
A,B

C(N(A,B,W ))

= max
A,B

χ(N(A,B,W ))

= χ(W )A→B. (6.40)
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Joint encoding-joint decoding:

Using Eqs. (6.35), (6.7), (6.8) and (6.34) we can write

C∞(W )A→B = max
A,B

C∞(N(A,B,W ))

= max
A,B

χreg(N(A,B,W ))

= max
A,B

lim
n→∞

χ [N(A,B,W )⊗n]

n

= lim
n→∞

χ(W⊗n)

n
. (6.41)

6.5.3 Bounds on the classical capacities of a quantum process

Although we have been able to reduce the classical capacities of processes to that of channels, our

results so far do not provide an upper bound on how much information can be transmitted through a

process. This is because the channel N(A,B,W ) can have arbitrary input and output dimension.

To establish a bound, we first describe our protocol from a slightly different point of view. With

Alice’s input ensemble {p(m),ρm}, we can introduce a concatenation of ρm with the channel A

as AAIAO
m = ρ

A′′I
m ∗AA′′I AIAO with Am being the Choi representation of the resulting CPTP map Am.

Similarly, we can combine Bob’s channel B and POVM operation {Em} to describe a set of CP maps

{BBIBO
m′ =BBIBOB′′O ∗(ET

m′)
B′′O}m′ , where ∑m′ B

BIBO
m′ is a CPTP map and (ET

m′)
B′′O is the Choi representation

of Em′ . The superscript ‘T ’, denoting the transpose operator, is due to definition (6.10), according to

which the Choi of a measurement operator Em′ is its transpose ET
m′ .

With this in mind, we present two theorems, that apply respectively to the product and joint

encoding scenarios.

Theorem 2. In a one-way communication scenario, the optimisation of the Holevo quantity of a

process W can be simplified as

χ(W )A→B = max
ρm,A,p(m)

S
[
∑ p(m)Γ(Am,W )

]
−

∑ p(m)S [Γ(Am,W )] . (6.42)

Here the Γ(Am,W ):=Am∗TrBO W/dBO is a map that transforms the Choi representation of the CPTP

operation Am and the process matrix W, to a quantum state on Bob’s input space BI .

Proof. The reduced process [181] on which Bob applies his CPTP map BBIBO
m′ is described by AAIAO

m ∗
W AIAOBIBO . Now, using Lemma 1, we can write

AAIAO
m ∗W AIAOBIBO=1BO⊗

(
AAIAO

m ∗
TrBO W

dBO

AIAOBI
)

= 1BO⊗Γ(Am,W )BI . (6.43)
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: Encoding and decoding schemes. Here we show two copies of process W . Fig. (a),
(b), (c) demonstrate product-encoding product decoding, product encoding joint decoding and joint
encoding-joint decoding respectively. Product encoding is achieved using the joint state ρ

(1)
m ⊗ρ

′(1)
m

and joint encoding is achieved using the entangled state ρ
(2)
m . Similarly, we use E(1)

m′ ⊗E
′(1)
m′ for product

decoding and E(2)
m′ for joint decoding. Figs. (d), (e), (f) are the simplifications due to Theorem 1 and

Theorem 2. Relevant labelling of the Hilbert spaces are described in the text.

Where Γ(Am,W ):=Am∗TrBO W/dBO . In other words, as shown in Fig. 6.3, we can simplify Alice’s

CPTP map and the process to a quantum state Γ(Am,W ) in the Hilbert space BI , with Bob’s output

at BO being discarded. The maximum classical information that can be encoded in the ensemble

{p(m),Γ(Am,W )} is given by Eq. (6.42) [59] where we only need to optimise over the free parameters

p(m), ρm and A.

This implies one does not need to optimise over Bob’s operation to obtain the Holevo quantity for

the process.

A direct consequence of this theorem is that χ(W )A→B ≤ log(dBI), because we have reduced the

Holevo quantity of a process to that of an ensemble of states in BI . In turn, this allows us to establish a

bound on the product encoding capacities, i.e., C(1)(W )A→B and C(W )A→B, according to Eq. (6.39)

and Eq. (6.40), respectively. However, for joint encoding schemes we need to evaluate the regularised

Holevo quantity for the optimum channel N(A,B,W ), as shown in Eq. (6.38). In ligth of this, we

introduce the following theorem that bounds the capacity, C∞(W )A→B.
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Theorem 3. The joint encoding capacity for a process, C∞(W )A→B, is limited to Alice’s joint CPTP

map A
(n)
m =ρ

(n)
m ∗A⊗n with n→ ∞, and the distribution p(m).

C∞(W )A→B=

lim
n→∞

max
ρ
(n)
m ,A,p(m)

1
n

(
S
[
∑ p(m)Γ(A

(n)
m ,W )

]
−

∑ p(m)S
[
Γ(A

(n)
m ,W )

])
. (6.44)

Here the map Γ transforms the joint CPTP map A(n)
m and the process W to an entangled state at Bob’s

input space ⊗n
j=1B j

I .

Proof. First, we apply Lemma 1 to each copy of the channel N(A,B,W ) and replace it with

N(A,B, B j
O
W ). Then, in a joint encoding scheme, we apply ⊗ jN(A,B, B j

O
W ) to a (possibly en-

tangled) joint state ρ
(n)
m . Combining this joint state with the n copies of Alice’s operation A, we obtain

a joint CPTP map A
(n)
m :⊗ jA

j
I →⊗ jA

j
O, with Choi representation A(n)

m = ρ
(n)
m ∗A⊗n. Plugging A(n)

m into

the n copies B j
O
W , we get A(n)

m ∗
(
⊗ jB j

O
W
)
= 1⊗

n
j=1B j

O⊗Γ(A
(n)
m ,W ), where Γ(A

(n)
m ,W ) ∈⊗n

j=1 B j
I is a

(possibly entangled) state, defined as

Γ(A
(n)
m ,W ) =

A(n)
m ∗

(
Tr⊗n

j=1B j
O

W⊗n)
Πn

j=1dB j
O

. (6.45)

One can extend this setup to n→∞ and achieve a joint state at Bob’s input Hilbert space ⊗∞
j=1B j

I .

Similar to Theorem 2, we calculate the maximum amount of classical information encoded in the

ensemble {p(m),Γ(A
(n)
m ,W )} and regularise it to obtain the joint encoding capacity C∞(W )A→B where

the free parameters are of course, p(m), ρ
(n)
m and A. Thus we obtain Eq. (6.44).

Corollary 3.1. The capacity C∞(W )A→B is upper bounded by the logarithm of the dimension of Bob’s

input Hilbert space, i.e. C∞(W )A→B ≤ log(dBI).

Proof. This is the consequence of Holevo’s theorem [59]. The information content of the ensemble

{p(m),Γ(A(n)
m ,W )} cannot exceed logarithm of the dimension of Γ(A(n)

m ,W ), i.e., n log(dBI). Regular-

ising this quantity proves the corollary.

Now we summarise our results. If we consider Alice’s input message m and Bob’s output message

m′, we can introduce a chain of inequalities for different classical capacities of the process W .

I(m′ : m)≤C(1)(W )A→B ≤C(W )A→B = χ(W )A→B

≤C∞(W )A→B ≤ log(dBI). (6.46)

One can write down a similar chain of inequalities for a communication protocol from Bob to Alice.

Note that this inequality holds even for a process W that contains shared entanglement between
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Alice’s and Bob’s input Hilbert spaces. This does not contradict the higher capacity achievable in an

entanglement assisted communication protocol, such as super-dense coding [19]. This is because when

applying the inequalities in Eq. (6.46), one has to consider the total dimension of Bob’s input Hilbert

space, which consists of the part of the shared entangled state in Bob’s possession and the quantum

state that Alice communicates to him.

6.6 Broadcast communication

Having established the notion of one-way communication through a process, we proceed to explore

scenarios where all communicating parties can transmit and receive information.

Two-party communication: Let us first consider the two-party situation, where Alice (Bob) sends

the message m(k) and Bob (Alice) receives the message m′(k′). The possibility to violate causal

inequalities indicates that indefinite causal order can indeed provide an advantage in some two party

games [7, 219]; however, it is unclear if this advantage results in a communication enhancement. To

address this question, it is necessary to find limits on two-way communication for causally separable

processes. In this section we address this question.

There are at least two ways a process can be used as a resource for bidirectional communication,

depending on whether Alice’s and Bob’s instruments are fixed or if they are chosen depending on

the direction of communication attempted. In the first case, the parties produce a single probability

distribution P(m′,k′|m,k) from the process, and one looks for communication in the marginals P(m′|m),

P(k′|k). In the second case, the parties can generate different probability distributions depending

on who is sending and who is receiving. The one-directional capacities for the first case are upper

bounded by those in the second case, as the best instrument to receive a message might differ from the

best to send a message. In this section, we will be mostly concerned with the second case.

Let us then consider a scenario where the order between Alice’s and Bob’s local operations is

determined based on a random outcome. We represent a process where Alice can signal to Bob, but not

the other way around, by W A≺B = BOW A≺B and the reversed direction of signalling by W B≺A=AOW B≺A.

The process matrix WSep in this case is a convex combination of W B≺A and W A≺B [181]:

Wsep = λW B≺A +(1−λ )W A≺B, (6.47)

where 0≤ λ ≤ 1 is the probability for Bob to be first. We call such a process a causally separable

process [7]. We investigate a scenario where both Alice and Bob are trying to send information to

each other through the background process WSep. A reasonable attempt to quantify this bi-directional

communication is to evaluate the sum of two product capacities, C(1)(W )A→B and C(1)(W )B→A. We

investigate this quantity and evaluate an operationally significant upper bound from the perspective of

the classical capacity of the process.

Theorem 4. For a bi-directional communication protocol through a causally separable process,

defined in Eq. (6.47), the following inequality holds:
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C(1)(Wsep)
A→B+C(1)(Wsep)

B→A

≤λ log(dAI)+(1−λ ) log(dBI). (6.48)

Proof. Considering a fixed input probability distribution P(a), the following linear relationship among

marginal conditional probabilities holds for a causally separable process [7].

P(a′|a)Wsep = λP(a′|a)W B≺A +(1−λ )P(a′|a)W A≺B. (6.49)

In our protocol, we consider a∈{m,k} to be the inputs and a′∈{m′,k′} to be the outputs. Let us

consider A→B communication. Consequently we can write:

C(1)(WSep)
A→B = max I(m′ : m)

≤max
[
λ I(m′:m)W B≺A +(1−λ )I(m′:m)W A≺B

]
= (1−λ )max I(m′:m)W A≺B

≤(1−λ ) log(dBI). (6.50)

Here, the first equation is due to Eqs. (6.4), and (6.35). The maximisation is taken over Alice’s and

Bob’s local operations, their message ensembles and the POVM operations. The first inequality is due

to the fact that mutual information I(a′:a) is a convex function of p(a′|a) for a fixed input probability

distribution p(a) [1]. We obtain the second equality because, for a definite ordered scenario B≺ A,

output m′ of Bob’s local lab becomes independent of Alice’s input. This makes I(m:m′)W B≺A = 0. The

final inequality is due to Eq. (6.46). We apply a similar set of reasoning to obtain a bound for B→ A

communication to obtain,

C(1)(WSep)
B→A ≤ λ log(dAI). (6.51)

Adding Eq. (6.50) and (6.51), we find

C(1)(Wsep)
A→B+C(1)(Wsep)

B→A

≤ λ log(dAI)+(1−λ ) log(dBI). (6.52)

For the particular case dAI=dBI=d, we see that the sum of two product capacities is upper bounded

by log(d). In other words, the total communication in causally separable processes can be no

more than maximal one-way communication. We note that a weaker version of this inequality

holds for the scenario where the parties’ instruments are fixed regardless of the attempted direction

of communication. In this case, the single-shot capacities coincide with the mutual information

obtained from a single conditional probability distribution P(m′,k′|m,k), resulting in the inequality

I(m′:m)+ I(k′:k)≤ log(d). This is an example of an entropic causal inequality, first considered in
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Ref. [232]. Remarkably, no violation of this inequality is known, and our own numerical search also

did not reveal any violation of Eq. (6.48). This suggests that the bound on the total bidirectional

communication might hold for general processes.

We note that the bound we established applies to all the quantum processes for which a physical

interpretation is known. For example, in a process with coherent control of causal order, such as the

quantum switch [6], tracing out the control leads to a separable bipartite process, to which the bound

applies. More generally, it has been shown that any bipartite processes that admit a unitary extension

is causally separable [233, 234].

Multi-party communication: The above-mentioned protocol can be extended to multiple parties.

In this case, each party tries to communicate his/her information to the remaining parties. Similarly

to above, we consider a process for N parties, A(1),A(2), ...,A(N) that can be written as a probabilistic

mixture of permutations of different causal order:

W N
sep = ∑

σ

qσW σ . (6.53)

Here, σ denotes the different permutations of the communicating parties and qσ denotes the probability

of occurrence of each permutation. Although this is not the most general process with definite causal

order [154, 185], it is one of particular interest, as it represents a scenario where the order among

parties can be set by external, random, variables, but is independent of the parties’ actions.

Motivated by the previous section, we intend to find an upper bound to the quantity ∑i, j C(1)(W N
sep)

i→ j.

Here i→ j refers to signalling from the party A(i) to the party A( j) and C(1)(W N
sep)

i→ j is the one-way

capacity defined for the bipartite reduced process for A(i) and A( j), obtained by fixing CPTP maps for

all other parties, and maximised over the other parties’ CPTP maps.

Theorem 5. If the dimensions of all the input Hilbert spaces of the communicating parties are equal

(d), then

∑
i, j

C(1)(W N
sep)

i→ j≤N(N−1)
2

log(d). (6.54)

Proof. we can write the conditional probability P(~m′|~m) = ∑σ qσ Pσ (~m′|~m). We can write down

the marginals P(m′j|mi) = ∑σ qσ Pσ (m′j|mi) ∀i, j. By the convexity of mutual information and the

inequalities introduced in Eq. (6.46):

C(1)(W N
sep)

i→ j ≤max∑
σ

qσ Iσ (m′j : mi)

= max ∑
∀{i, j}|σ(i)≺σ( j)

qσ Iσ (m′j : mi)

≤ ∑
∀{i, j}|σ(i)≺σ( j)

qσ log(dA j
I
)

= ∑
∀{i, j}|σ(i)≺σ( j)

qσ log(d) (6.55)

The maximisation is taken over all communicating parties’ local operations, their message ensembles

and the POVM operations. The first inequality is due to the convexity of mutual information relative
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to mixtures of conditional probabilities (as in the bipartite case). The first equality follows from

the fact that if the party σ( j) is in the causal past of the party σ(i), then I(m′j:mi) = 0. dA j
I

is the

dimension of the input Hilbert space of the party A j. The second equality follows because of our

assumption of all the dimensions of the input Hilbert spaces being equal. Now, it is easy to see

that the n-th party has total n−1 parties in his/her causal past. Therefore, considering each party

trying to communicate with the remaining N−1 parties, the total number of available channels are

N(N−1)−∑
N
n=1(n−1) = N(N−1)/2. This results in

∑
i, j

C(1)(W N
sep)

i→ j ≤ N(N−1)
2

log(d). (6.56)

The key property that leads to the above bounds is the convexity of mutual information under

probabilistic mixtures of classical channels. With this in mind, we see that the above results can be

extended directly to the product encoding, joint decoding setting, replacing the product capacity C(1)

with the HSW capacity C. Indeed, we have seen that C is given by the (maximised) Holevo quantity χ

of the one-way channel generated by a process and, just like mutual information, χ is convex over the

probabilistic mixture of channels. It remains an open question whether higher total transmission rates

can be achieved in a joint encoding setting.

6.7 Conclusion

We have formalised classical communication through a general quantum causal structure, which may

be either probabilistic or indefinite. We have defined the Holevo quantity as well as different classical

capacities for an arbitrary process and established relationships among them. We have found that,

for one-way communication through a general higher-order process with the communicating parties

admitting an indefinite causal order, the various capacities can be reduced to those of ordinary channels,

up to an optimisation over the operations performed in local laboratories. We have further shown that,

for one-way communication, the classical capacity of a process cannot exceed the Holevo bound—at

most one classical bit per received qubit—even in case of indefinite causal order.

Next, we have quantified bi-directional and more generally broadcast communication protocols

for processes with definite but classical mixture of causal orders. We have demonstrated that the total

amount of communication between two parties cannot exceed the maximal one-way capacity in a fixed

causal order, with a similar bound extending to multipartite broadcast communication. One can ask

whether a process with an indefinite causal structure can violate these bounds. We have answered this

negatively for coherent control of causal order, as in the quantum switch [5]. It is an open question

whether a more general process can violate the bounds. As we have not found any violation, it is an

interesting possibility that the bounds we have found might constitute a universal limit to the total

communication possible in any process.
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Chapter 7

Conclusion

In this thesis I have used higher-order maps that transform input quantum maps to output quantum

maps to explore two applications: (1) non-Markovian quantum dynamics and (2) indefinite causal

structures.

Non-Markovian dynamics occur due to the inevitable system-environment interaction where the

environment memorises the past information about the systems. The resulting temporal correlations

among the operations that act on the system are particularly problematic: we need to estimate the

non-Markovian noise to make error correction possible. In Chapter 3, I showed how we experimentally

estimated such non-Markovianity by performing tomographically incomplete measurements and then

using machine-learning models. Although a complete tomography of the process matrix achieves full

characterisation, it would be intractable both computationally and experimentally.

I dedicated the subsequent chapters (Chapter 4, 5, and 6) to describe various aspects of indefinite

causal structures. In Chapter 4, I described how we experimentally implemented the quantum switch—a

device that demonstrates indefinite causal order. We verified the causal non-separability of the quantum

switch by measuring a causal witness. In Chapter 5, I showed an information-theoretic advantage of

the quantum switch. I discussed how we can transmit information when the causal order between two

channels—one of which is depolarising—is indefinite; such information transmission is impossible in

the case of channels with a definite order. Finally, in Chapter 6 I introduced different communication

protocols through the most general bipartite processes. We developed notions of classical capacities of

quantum processes. We also explored the one-way and broadcast communication protocols. In each

case, we established relevant bounds for maximum possible information transmission.

Through the works presented in my thesis, I conveyed the utility of higher-order maps, which

capture interesting quantum phenomena that are either problematic or completely impossible to

characterise using conventional quantum techniques. There are several avenues of exploration to

pursue from here.

Let us first explore further application in discrete-encoded quantum-logic protocols. In Chapter 6, I

explored classical communication through higher order maps. This work will next need to be extended

to quantum communication, e.g. quantum key distribution; secure multi-party voting, and so on.
109
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Additionally, there are other interesting information-theoretic tasks worth exploring, most notably

error-correction.

Very recently there have been initial forays into exploring quantum thermodynamics in the presence

of indefinite causal structure [235–237]. For instance, using a quantum-switch, Guha et. al. [236]

showed extraction of free-work; Felce and Vedral [237] achieved a non-classical cooling. I fully expect

that extending these works to arbitrary higher-order maps will discover new quantum thermodynamic

phenomena.

Finally, nearly all the work to date with higher-order maps has been with discrete-variable en-

codings: there remains much work to be done to apply higher-order maps to continuous-variable

protocols [238–240]. It is an open question as to whether there will be an information-theoretic

advantage in this case, and of course it may yield new capabilities and applications.

The results from this thesis, and the roadmap I have sketched above, suggests that this is only the

beginning of using higher-order maps in quantum foundations and quantum technology.
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[238] F. Giacomini, E. Castro-Ruiz, Č. Brukner, Indefinite causal structures for continuous-variable

systems, New J. Phys. 18 (11) (2016) 113026. doi:10.1088/1367-2630/18/11/

113026.

URL https://iopscience.iop.org/article/10.1088/1367-2630/18/11/

113026

[239] J. Foo, S. Onoe, M. Zych, Unruh-dewitt detectors in quantum superpositions of trajectories,

Phys. Rev. D 102 (2020) 085013. doi:10.1103/PhysRevD.102.085013.

URL https://link.aps.org/doi/10.1103/PhysRevD.102.085013

https://ieeexplore.ieee.org/document/335960
https://ieeexplore.ieee.org/document/335960
http://dx.doi.org/10.1109/ISIT.2002.1023343
http://dx.doi.org/10.1109/ISIT.2002.1023343
http://arxiv.org/abs/quant-ph/0206186
http://dx.doi.org/10.1109/ISIT.2002.1023343
http://arxiv.org/abs/1408.1464
http://arxiv.org/abs/1408.1464
http://dx.doi.org/10.1088/1367-2630/aa8f9f
http://dx.doi.org/10.1088/1367-2630/aa8f9f
http://arxiv.org/abs/1706.10270
https://doi.org/10.1088/1367-2630/aa8f9f
https://doi.org/10.1088/1367-2630/aa8f9f
http://dx.doi.org/10.1088/1367-2630/aa8f9f
http://arxiv.org/abs/2002.12157
http://arxiv.org/abs/2002.12157
http://arxiv.org/abs/2003.05682
http://arxiv.org/abs/1812.07508
https://link.aps.org/doi/10.1103/PhysRevA.102.032215
https://link.aps.org/doi/10.1103/PhysRevA.102.032215
https://doi.org/10.1103/PhysRevA.102.032215
https://doi.org/10.1103/PhysRevA.102.032215
https://link.aps.org/doi/10.1103/PhysRevA.102.032215
https://link.aps.org/doi/10.1103/PhysRevLett.125.070603
https://doi.org/10.1103/PhysRevLett.125.070603
https://link.aps.org/doi/10.1103/PhysRevLett.125.070603
https://iopscience.iop.org/article/10.1088/1367-2630/18/11/113026
https://iopscience.iop.org/article/10.1088/1367-2630/18/11/113026
https://doi.org/10.1088/1367-2630/18/11/113026
https://doi.org/10.1088/1367-2630/18/11/113026
https://iopscience.iop.org/article/10.1088/1367-2630/18/11/113026
https://iopscience.iop.org/article/10.1088/1367-2630/18/11/113026
https://link.aps.org/doi/10.1103/PhysRevD.102.085013
https://doi.org/10.1103/PhysRevD.102.085013
https://link.aps.org/doi/10.1103/PhysRevD.102.085013


BIBLIOGRAPHY 135

[240] L. C. Barbado, E. Castro-Ruiz, L. Apadula, i. c. v. Brukner, Unruh effect for detectors in

superposition of accelerations, Phys. Rev. D 102 (2020) 045002. doi:10.1103/PhysRevD.

102.045002.

URL https://link.aps.org/doi/10.1103/PhysRevD.102.045002

https://link.aps.org/doi/10.1103/PhysRevD.102.045002
https://link.aps.org/doi/10.1103/PhysRevD.102.045002
https://doi.org/10.1103/PhysRevD.102.045002
https://doi.org/10.1103/PhysRevD.102.045002
https://link.aps.org/doi/10.1103/PhysRevD.102.045002

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Conceptual Background 
	Elementary objects in Quantum Mechanics
	Quantum state
	Joint quantum state
	Quantum Channel
	Quantum measurement
	Choi-Jamiołkowski (CJ) isomorphism

	Process Framework 
	Examples

	Background on information theory
	Classical Shannon theory
	Quantum Shannon theory

	Experimental Elements
	Polarisation of light
	Transverse spatial mode of light


	Characterising a non-Markovian quantum process
	Introduction
	Initially separable system-environment
	Initially correlated system-environment
	Operational difficulty with dynamical maps
	Resolving the initial correlation problem

	Our work
	Theory
	Formulation of quantum processes
	Our non-Markovian process
	Generating data and labels

	Experiment
	Polynomial Regression
	Conclusion

	Indefinite causal order in a quantum switch
	Introduction
	Quantum switch
	Causal witness
	Taking experimental imperfections into account

	Experiment
	Implementation of unitaries
	Polarisation measurement at the output
	Result

	Conclusion
	Author contribution

	Communicating via ignorance
	Introduction
	Background
	Estimating the Stokes parameter of the quantum switch

	Experiment
	Effects of experimental imperfections

	Results
	Two depolarizing channels
	Depolarizing and dephasing channel
	More general combinations of depolarizing and dephasing channels
	Bit flip and bit-phase-flip channels
	Holevo capacity from path superposition

	Conclusion
	Author contribution

	Classical communication through quantum causal structures
	Introduction
	 Classical communication through a quantum channel
	The Process framework
	Motivation
	Causal inequality

	One-directional communication through an indefinitely ordered process
	Asymptotic setting
	Classical capacities of a quantum process
	Bounds on the classical capacities of a quantum process

	Broadcast communication
	Conclusion
	Author contribution

	Conclusion
	Bibliography

